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SL2-ORBITS AND DEGENERATIONS OF MIXED
HODGE STRUCTURE

Gregory Pearlstein

Abstract

We extend Schmid’s SL2-orbit theorem to a class of variations
of mixed Hodge structure which normal functions, logarithmic de-
formations, degenerations of 1-motives and archimedean heights.
In particular, as a consequence of this theorem, we obtain a simple
formula for the asymptotic behavior of the archimedean height of
a flat family of algebraic cycles which depends only on the weight
filtration and local monodromy.

1. Introduction

Let f : X → S be a smooth, projective morphism of complex, quasi-
projective varieties. Then, by the work of Griffiths [18], the cohomol-
ogy groups Vs = Hk(Xs) patch together to form a variation of Hodge
structure V over S. Furthermore, as a consequence of Schmid’s orbit
theorems [34], [7], one has a complete local theory regarding how such
variations of Hodge structure degenerate along the boundary of a (par-
tial) compactification S →֒ S̄.

Namely, by the work of Hironaka [22] and Borel [11], we can re-
strict our attention to the case where S is a product of punctured disks
∆∗n and the monodromy representation of V is given by a system of
unipotent transformations Tj = e−Nj . Schmid’s nilpotent orbit theo-
rem asserts that, after lifting the period map of V to a π1-equivariant
map

F : Un → D
from a product of upper half-planes into the corresponding classifying
space of polarized Hodge structure, there exists an associated nilpotent
orbit

θ(z) = exp


∑

j

zjNj


 .F∞

which is asymptotic to F (z) with respect to a suitable metric on D.
Furthermore, the possible nilpotent orbits θ(z) which can arise in this
way are, in turn, classified by the SL2-orbit theorem [34], [7] which,
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roughly speaking, says that every such nilpotent orbit θ(z) is asymptotic

to another nilpotent orbit θ̂(z) which arises from a representation of
SL2(R)n.

More precisely, recall that the Lie group GR consisting of all real
automorphisms of the polarization acts transitively on D. Accordingly,
a 1-variable nilpotent orbit θ̂(z) is said to be an SL2-orbit if there exists
a base point Fo ∈ D and a Lie homomorphism ψ : SL2(R) → GR such
that

θ̂
(
g.
√
−1

)
= ψ(g).Fo.

Schmid’s 1-variable SL2-orbit theorem then asserts that given any nilpo-
tent orbit ezN .F of pure, polarized Hodge structure, there exists a SL2-
orbit ezN .F̂ , and a distinguished real analytic function

g : (a,∞) → GR

such that

(a) eiyN .F = g(y)eiyN .F̂ ;
(b) g(y) and g−1(y) have convergent series expansions about ∞ of the

form (1 +
∑∞

k=1 Aky
−k) with Ak ∈ ker(adN)k+1.

Likewise, in the several variable case, every n-variable nilpotent orbit
is asymptotic via a g(y)-like function to an SLn

2 -orbit over a suitable
region of Un.

In this article, we consider analogous questions for morphisms f :
X → S which are no longer necessarily proper or smooth. In this
context, the variations of pure Hodge structure considered above are re-
placed (cf. §3) by variations of graded-polarized mixed Hodge structure
which are admissible in the sense of Steenbrink and Zucker [37].

In [31], we proved that for admissible variations over a 1-dimensional
base S, one has a corresponding nilpotent orbit theorem. To state our
main result, we recall (cf. §2) that the period map of a variation of
graded-polarized mixed Hodge structure takes values in the quotient of
a classifying space M of graded-polarized mixed Hodge structure upon
which a Lie group G acts transitively by automorphisms. Furthermore
[25], in this setting the natural analogs of the SL2-orbits considered

above are admissible nilpotent orbits ezN .F̂ for which the associated
limiting mixed Hodge structure (cf. §3) is split over R.

Accordingly, by virtue of the above remarks, it is natural to conjecture
that given an admissible nilpotent orbit ezN .F , there should exist a split
orbit ezN .F̂ and a distinguished real analytic function

g : (a,∞) → G

such that

(a) eiyN .F = g(y)eiyN .F̂ ;
(b) g(∞) := limy→∞ g(y) ∈ ker(adN);
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(c) g−1(∞)g(y) and g−1(y)g(∞) have convergent series expansions
about ∞ of the form (1 +

∑
k>0 Aky

−k) with Ak ∈ ker(adN)k+1.

In §6–9, we prove the existence [Theorem (4.2)] of such a function
g(y) provided the Hodge numbers of the associated classifying space M
belong to one of the following two subcases, each of which arises in a
number of geometric settings (e.g., 1-motives [12], logarithmic deforma-
tions [38], moduli of curves [20]):

(I) hp,q = 0 unless p + q = k, k − 1;
(II) hp,q = 0 unless p + q = 2k − 1, or (p, q) = (k, k), (k − 1, k − 1).

In particular, as a consequence of the SL2-orbit theorem described
above, we obtain a simple formula for the asymptotic behavior of the
archimedean height [1], [2], [16]

h(s) = 〈Zs, Ws〉∞

of a flat family of algebraic cycles Zs, Ws ⊆ Xs over a smooth curve
S, which depends only on the weight filtration and local monodromy of
the associated variation of mixed Hodge structure [19]. Applying this
result to the case where X is the Jacobian bundle attached to a family
of smooth projective curves and Z, W arise from the Ceresa cycle gives
an alternate proof of some recent results of Hain and Reed [20] on the
biextension line bundle over Mg.

As in [34], [7], the proof of Theorem (4.2) boils down to the con-
struction of an explicit solution to an associated system of “monopole
equations” attached to the nilpotent orbit ezN .F . More precisely (cf.
§2), in each of the two subcases (I) and (II) considered above, there
exists a natural subgroup H of G which acts transitively on the cor-
responding classifying space M by isometries. As such (cf. §6), each
choice of base point Fo ∈ M defines an auxiliary principal bundle

HFo → H → H/HFo

P over M. Accordingly, a choice of connection ∇ on P determines a
lift of eiyN .F∞ to an H-valued function h(y) which is tangent to ∇.
Moreover, as in [34], the resulting function h(y) satisfies a differential
equation [Theorem (6.11)] of the form

(1.1) h−1 dh

dy
= −L Ad (h−1(y))N

relative to a suitable endomorphism L of h = Lie (H). In particular, as
a consequence of equation (1.1), the Hodge components

β(y) = β1,−1(y) + β0,0(y) + β−1,1(y) + β0,−1(y) + β−1,0(y)
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of the function β(y) = Ad (h−1(y))N associated to a nilpotent orbit
eiyN .F of type (I) satisfy the following system of differential equations

(1.2)
d

dy
β0(y) = −[β0(y), L β0(y)], β0(y) =

∑

r+s=0

βr,s(y),

(1.3)
d

dy

(
β−1,0

β0,−1

)
=

√
−1

(
adβ0,0 −2 ad β−1,1

2 adβ1,−1 −adβ0,0

) (
β−1,0

β0,−1

)
.

Following [34], we then observe that equation (1.2) becomes equiva-
lent to Nahm’s equations [23]

−2
d

dy
X+(y) = [Z(y), X+(y)], 2

d

dy
X−(y) = [Z(y), X−(y)](1.4)

− d

dy
Z(y) = [X+(y), X−(y)]

upon setting X+(y) = 2iβ1,−1(y), Z(y) = 2iβ0,0(y) and X−(y) =
−2iβ−1,1(y). Moreover, using the methods of [7], one can construct
a series solution (cf. §7) to equation (1.4) in the form of a function

(1.5) Φ(y) : (a,∞) → Hom(sl2(C), gC), Φ(y) =
∑

n≥0

Φny−1−n/2

such that X−(y) = Φ(y)x−, Z(y) = Φ(y)z, and X+(y) = Φ(y)x+ where:

(1.6) x− =
1

2

(
1 −i
−i −1

)
, z =

(
0 −i
i 0

)
, x+ =

1

2

(
1 i
i −1

)
.

Building upon the series solution (1.5), we then construct a similar
series solution to (1.3) in §8. Taken with equation (1.1), such a series
solution for β(y) then allows us to compute h(y) modulo left multipli-
cation by an element ho ∈ H. Imposing the boundary condition

lim
y→∞

e−iyNh(y).Fo = F

then determines ho. Having computed h(y), the desired function g(y)
is then given by the formula

h(y) = g(y)y−H/2

where H = Φ0(x
+ + x−).

To illustrate how the SL2-orbit theorem described above works in the
context of a geometric example, let X be a compact Riemann surface
and

(1.7) c1 = c12 − c11, c2 = c22 − c21

be a pair of disjoint 0-cycles on X. Then (up to an additive constant),
there exists a unique harmonic function f : X − |c2| → R such that

(1.8) Ω =
1

2π
(∗df − i df)
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is a holomorphic 1-form on X − |c2| with simple poles along |c2| =
{c22, c21} and residues

Resc22(Ω) =
1

2πi
, Resc21(Ω) = − 1

2πi
.

The archimedean height of c1 and c2 is then defined to be

(1.9) 〈c1, c2〉 = 2π Im

(∫ c12

c11

Ω

)
.

To bring in the mixed Hodge structures, we now recall [12] that the
elements of H1(X−|c2|) can be decomposed according to (mixed) Hodge
type. Furthermore, with respect to this decomposition, Ω generates the
classes of type (1, 1). As such, the integral (1.9) can be viewed as a
period of H1(X − |c2|) with respect to c1. Therefore, upon varying
the triple (X, c1, c2), the integral (1.9) defines a “period map” whose
asymptotic behavior is governed by Theorem (4.2). In particular [The-
orem (5.19)], near a degenerate point s = 0,

〈c1(s), c2(s)〉 ≈ −µ log |s|
where µ is a constant which depends only on the local monodromy of
the associated variation of mixed Hodge structure.

More concretely, let E → ∆∗ be the family of elliptic curves

Es = C/(Z ⊕ τ(s)Z)

defined by the function τ(s) = 1
πi log(s) and

h(s) = 〈e3 − e0, e2 − e1〉
be the height function determined by the 2-torsion points

e0 = 0, e1 =
1

2
, e2 =

τ

2
, e3 =

1

2
(1 + τ).

Then, a short calculation shows that

h(s) = − log

∣∣∣∣
ϑ2(e2)

ϑ2(e1)

∣∣∣∣ +
1

2
log | exp(−2πie3)|

where ϑ is Riemann’s theta function, and hence h(s) ≈ −1
2 log |s| as

s → 0.

To illustrate another application of the SL2-orbit theorem, let

F : U → M
be the period map of a non-constant, admissible variation of type (I).
Then, as a consequence of Theorem (4.2), the holomorphic sectional
curvature of F (z) is negative, and bounded away from zero as Im(z) →
∞ [Theorem (4.9)].

Heuristically, the proof of this fact boils down to replacing F (z) by

the corresponding split orbit θ̂(z) = ezN .F̂ and then noting that split
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orbits of type (I) are actually SL2-orbits. More precisely, by virtue of
the above remarks,

‖F∗(d/dz)‖F (z) ≈ ‖θ̂∗(d/dz)‖θ̂(z).

Accordingly, since θ̂(z) is a nilpotent orbit, θ̂∗(
d
dz ) is basically just N ,

and hence (up to a constant scalar factor)

‖F∗(d/dz)‖F (z) ≈ ‖N‖θ̂(z).

Therefore (cf. §2), since the real elements of G act on M by isometries,
it then follows that

‖N‖θ̂(z) = ‖N‖exNeiyN .F̂ = ‖N‖eiyN .F̂ .

Consequently, since θ̂(z) is actually an SL2-orbit,

eiyN .F̂ = exp

(
−1

2
log(y)H

)
eiN .F̂

where H is real and [H, N ] = −2N . Thus,

‖F∗(d/dz)‖F (z) ≈ ‖N‖eiyN .F̂∞

= ‖N‖exp(− 1

2
log(y)H)eiN .F̂∞

= ‖Ad

(
exp

(
1

2
log(y)H

))
N‖eiN .F̂∞

= (1/y)‖N‖eiN .F̂∞

and hence the pullback of the metric of M along F is asymptotic to a
constant multiple of the Poincaré metric.

Acknowledgements. I wish to thank the Institute for Advanced Study,
the Max–Planck Institut für Mathematik, Bonn and the University of
Massachusetts, Amherst for their generous hospitality during the prepa-
ration of this manuscript. I also wish to thank Richard Hain for sug-
gesting the applications of this work to Arakelov geometry presented in
§5.

2. Preliminary Remarks

In this section, we recall the construction of the period map of a
variation of graded-polarized mixed Hodge structure, and discuss the
geometry of the associated classifying spaces of graded-polarized mixed
Hodge structure [24], [30], [38].

Definition 2.1. Let S be a complex manifold. Then, a variation
of graded-polarized mixed Hodge structure V over S consists of the
following data:

(1) A finite rank, Q-local system VQ over S;
(2) A rational, increasing filtration · · · ⊆ Wk ⊆ Wk+1 ⊆ · · · of VC =

VQ ⊗ C by sublocal systems;
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(3) A decreasing filtration · · · ⊆ Fp ⊆ Fp−1 ⊆ · · · of VC ⊗ OS by
holomorphic subbundles;

(4) A collection of non-degenerate bilinear forms

Qk : GrWk (VQ) ⊗ GrWk (VQ) → Q

of alternating parity (−1)k;

subject to the following two conditions:

(a) F is horizontal with respect to the Gauss–Manin connection ∇ of
V, i.e., ∇(Fp) ⊆ Fp−1 ⊗ Ω1

S ;
(b) For each index k, (GrWk (VQ),FGrWk , Qk) is a variation of pure,

polarized Hodge structure of weight k.

Remark. The rational structure of V plays no role in either the
statement or the proof of the SL2-orbit theorem. With the exception of
the material on Arakelov geometry in §5, all of the results in this paper
are valid in the category of real variations of graded-polarized mixed
Hodge structure.

In analogy with the pure case [34], the isomorphism class of a vari-
ation of graded-polarized mixed Hodge structure V → S is determined
by its period map

(2.2) ϕ : S → Γ\M, Γ = Image(ρ)

and its monodromy representation ρ : π1(S, s0) → GL(V ) on a fixed
reference fiber V = Vso . More precisely, let W and Q = {Qk} denote
the specialization of the weight filtration and graded-polarizations of
V to V . Define X to be the flag variety consisting of all decreasing
filtrations F of VC such that

dim(F p) = rank(Fp)

and let M denote the classifying space [30] consisting of all filtrations
F ∈ X such that (F, W ) is a mixed Hodge structure which is graded-
polarized by Q. Then, the period map (2.2) is obtained by simply
pulling back the Hodge filtration F of V to Vso via the Gauss–Manin
connection.

As in the pure case, the classifying spaces M defined above are com-
plex manifolds upon which a real Lie group acts transitively by complex
automorphisms. In the subsections below, we shall introduce a certain
“maximally homogeneous” hermitian metric on M, and compute its
curvature.

Theorem 2.3 ([30]). The classifying space M is a complex manifold

upon which the real Lie group

G =
{
g ∈ GL(VC)W | Gr(g) ∈ AutR(Q)

}
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acts transitively by automorphisms, where GL(VC)W denotes the stabi-

lizer of W in GL(VC), and Gr(g) denotes the induced action of g ∈
GL(VC) on GrW .

Proof. That G acts transitively on M is a matter of simple linear
algebra. In particular, since G acts transitively on M, the orbit M̌ ⊆ X
of Fo ∈ M under the action of the complex Lie group

GC =
{
g ∈ GL(VC)W | Gr(g) ∈ AutC(Q)

}

is well defined, independent of Fo. Therefore, in order to show that M
is a complex manifold on which G acts by automorphisms, it is sufficient
to show (cf. [30]) that M is an open subset of M̌ ∼= GC/GFo

C , i.e., for
every F ∈ M, there exists a neighborhood U of 1 in GC such that

gC ∈ U =⇒ gC.F ∈ M.

q.e.d.

Warning. GC is the complexification of GR = G ∩ GL(VR). In
general, G 6= GR.

In order to construct a hermitian metric on M, we now recall the
following result of Deligne [12]:

Theorem 2.4. Let (F, W ) be a mixed Hodge structure. Then, there

exists a unique, functorial bigrading

(2.5) VC =
⊕

p,q

Ip,q

of the underlying complex vector space VC such that

(a) F p = ⊕a≥p Ia,b;

(b) Wk = ⊕a+b≤k Ia,b;

(c) Ip,q = Iq,p mod ⊕r<q,s<p Ir,s.

Corollary 2.6. Each choice of graded-polarization Q = {Qk} of

(F, W ) determines a unique, functorial mixed Hodge metric hF on VC

such that

(i) The decomposition (2.5) is orthogonal with respect to hF ;

(ii) u, v ∈ Ip,q =⇒ hF (u, v) = ip−qQp+q([u], [v̄]).

Accordingly, via the standard identification of TF (M) with a subspace

of

TF (X) =
⊕

p

Hom(F p, VC/F p)

the mixed Hodge metric (2.6) extends to a hermitian metric h on T (M).

Remark. Equivalently, the induced metric (2.6) on T (M) can be
described as follows: Let F be a point in M. Then, application of
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Theorem (2.4) to the mixed Hodge structure (F .gC, W.gC) defines a
functorial bigrading

(2.7) gC =
⊕

r+s≤0

g
r,s
(F,W )

such that
tF =

⊕

r<0

g
r,s
(F,W )

is a vector space complement to the isotopy algebra gF
C of F in gC.

Consequently,

(2.8) TF (M) ∼= tF

via the differential of the exponential map

e : tF → M̌, e(u) = exp(u).F.

Moreover, relative to the isomorphism (2.8), hF (α, β) = Tr (αβ∗)..

In the pure case, the metric (2.6) can be identified with a G-invariant
metric on the corresponding classifying space of pure, polarized Hodge
structure D. In contrast, in the mixed case, the action of G on M
usually has non-compact isotopy, and hence there usually do not exist
any G-invariant metrics on M. Nonetheless, both the decomposition
(2.5) and the metric (2.6) are maximally homogeneous in the following
sense:

Theorem 2.9 ([24]). Let F ∈ M, GR = G ∩ GL(VR) and

Λ−1,−1
(F,W ) =

⊕

r,s<0

g
r,s
(F,W ).

Then,

(2.10) M = GR exp(Λ−1,−1
(F,W )).F.

Moreover, given any element g ∈ GR ∪ exp(Λ−1,−1
(F,W )):

(i) Ip,q
(g.F,W ) = g.Ip,q

(F,W );

(ii) The induced map Lg∗ : TF (M) → Tg.F (M) is an isometry.

To compute the curvature of T (M) with respect to the mixed Hodge
metric, let us fix a point F ∈ M. Then, on account of equation (2.10),
every element gC ∈ GC such that gC.F ∈ M admits a factorization of
the form:

(2.11) gC = gReλf

where g ∈ GR, eλ ∈ exp(Λ−1,−1
(F,W )) and f ∈ GF

C . Moreover, (cf. [30])

by restricting the possible values of λ and log(f) one can define a dis-
tinguished real-analytic factorization of the form (2.11) over a neigh-
borhood of 1 ∈ GC. Accordingly, by combining this factorization with
Theorem (2.9), we can then calculate the curvature of M following [11]:
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Theorem 2.12 ([29]). Let F ∈ M, and gC = η+ ⊕ η0 ⊕ η− ⊕Λ−1,−1

denote the decomposition of gC defined by the subalgebras

η+ =
⊕

r≥0, s<0

g
r,s
(F,W ) η− =

⊕

r<0, s≥0

g
r,s
(F,W )

η0 = g
0,0
(F,W ) Λ−1,−1 =

⊕

r,s<0

g
ρ,s
(F,W ).

Let π+, π0, π− and πΛ denote the corresponding projection operators

form gC onto η+, η0, η− and Λ−1,−1. Then, relative to the identification

(2.8), the hermitian holomorphic curvature of T (M) at F with respect

to the mixed Hodge metric (2.6) is given by the formula:

R(u, v) = S(u, v̄) − S(v, ū)

where

S(u, v̄) = πt ad

((
π+[v̄, u] +

1

2
π0[v̄, u]

)
+

(
π+[ū, v] +

1

2
π0[ū, v]

)∗)

+ [πt adπ+(v̄), πt adπ+(ū)∗]

and πt denotes orthogonal projection from gl(VC) onto tF with respect

to hF .

Corollary 2.13. The holomorphic sectional curvature of M along

u ∈ TF (M) is given by the formula R(u) = hF (S(u, ū)u, u)/h2
F (u, u).

Remark. Unlike the pure case, the mixed Hodge metric h need not
have negative holomorphic sectional curvature along horizontal direc-
tions. The underlying reason for this is that G need not be semisimple,
and hence one can construct holomorphic, horizontal maps F : C → M.

Following [24], in order to address the fact that G usually acts with
non-compact isotopy on M, we now construct a natural fibration M →
MR such that:

(i) GR acts transitively by isometries on MR;

(ii) The fiber over F̂ is isomorphic to the subalgebra

Λ−1,−1

(F̂ ,W )
∩ Lie(GR)

via the map λ 7→ eiλ.F̂ .

To this end, we recall that a grading of an increasing filtration W
of a finite dimensional vector space V is a semisimple endomorphism
Y of V such that Wk is the direct sum of Wk−1 and the k-eigenspace
Ek(Y ) for each index k. In particular, by Theorem (2.4), each mixed
Hodge structure (F, W ) induces a functorial grading Y = Y(F,W ) on the
underlying weight filtration W via the rule:

(2.14) Ek(Y ) =
⊕

p+q=k

Ip,q.
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Accordingly, a mixed Hodge structure (F, W ) is said to be split over

R if and only if the associated grading (2.14) is defined over R, i.e.,
Ip,q = Iq,p.

Theorem 2.15 ([24]). The locus of points F ∈ M such that (F, W )
is split over R is a C∞ submanifold of M on which GR acts transitively

by isometries.

To continue [24], let π : M → MR be a C∞ fibration such that:

(a) π(F ) ∈ exp(Λ−1,−1
F,W ).F ;

(b) g ∈ GR =⇒ π(g.F ) = g.π(F );
(c) F ∈ MR =⇒ π(F ) = F .

Then, on account of the fact that

exp
(
Λ−1,−1

(F,W )

)
∩ GF = 1,

the equation
π(F ) = e(F )−1.F

defines a C∞ function e : M → G such that

(1) e(F ) ∈ exp(Λ−1,−1
(F,W ));

(2) F̂ := e(F )−1.F ∈ MR;
(3) g ∈ GR =⇒ e(g.F ) = Ad (g)e(F );
(4) F ∈ MR =⇒ e(F ) = 1.

Conversely, given a C∞ function e : M → G which satisfies conditions
(1)–(4), the above process can be inverted to define a corresponding
fibration π : M → MR as above. Thus, as a consequence of the next
result, there exists a unique fibration M → MR such that

e(F ) = e(F )−1.

Theorem 2.16 ([7]). Let (F, W ) be a mixed Hodge structure. Then

there exists a unique, real element

δ ∈ Λ−1,−1
(F,W ) =

⊕

r,s<0

gl(VC)r,s
(F,W )

such that (F̂ , W ) = (e−iδ.F, W ) is split over R.

Proof. Let Y = Y(F,W ) denote the grading (2.14) of W . Then, by
virtue of Theorem (2.4),

Ȳ = Y mod Λ−1,−1
(F,W ).

Consequently (cf. [7]), there exists a unique real element δ of Λ−1,−1
(F,W )

such that
Ȳ = e−2iδ.Y.

Therefore, by virtue of part (i) of Theorem (2.9), (F̂ , W ) = (e−iδ.F, W )
is split over R, with grading Y(F̂ ,W ) = e−iδ.Y(F,W ). q.e.d.
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In particular, since both the mixed Hodge metric and the splitting
operation (2.16) depend upon the Deligne–Hodge decomposition (2.5),
the complexity of the fibration M → MR provides a measure of the
failure of G to act on M by isometries. As such, the next result implies
that the geometry of the classifying spaces considered in §1 should be
“simple” [cf. Theorem (2.19)]:

Theorem 2.17. Let M be a classifying space of type (I) or (II) (cf.
§1), and

Lie−r(W ) = {α ∈ gl(VC) | α(Wk) ⊆ Wk−r}.
Then, the fibration M → MR defined by Theorem (2.16) is isomorphic

to the trivial fibration

M ∼= Rd ×MR

where d = dimC Lie−2(W ).

Proof. If M is type (I) then d = 0 and every point F ∈ M is split
over R due to the short length of W . Similarly, if M is type (II) then

(2.18) Λ−1,−1
(F,W ) = g−1,−1 =

⊕

p+q=−2

gr,s = Lie−2(W )

due to the Hodge numbers of M. Consequently, in this case, the fibra-
tion M → MR is given by the formula

eiλ.F 7→ F, λ ∈ Lie−2(W ) ∩ gl(VR), F ∈ MR.

q.e.d.

Theorem 2.19. Let M be a classifying space of type (I) or (II).
Then, the subgroup

H = {g ∈ G | Gr(g) ∈ AutR(Wk/Wk−2)}
of G consisting of those elements g ∈ G which induce real automor-

phisms of Wk/Wk−2 for all k, acts transitively on M by isometries.

Proof. If M is type (I) then M = MR and H = GR, so we’re done
by Theorem (2.15). Suppose therefore that M is type (II). Then, since
H contains the subgroups GR and

exp
(
Λ−1,−1

(F,W )

)
= exp(Lie−2(W ))

for every point F ∈ M, it then follows from Theorem (2.9) that H acts
transitively on M. To see that H acts by isometries, recall [7] that the
set Y(W ) consisting of all gradings Y of W is an affine space upon which
exp(Lie−1(W )) acts simply transitively by the rule

(2.20) g.Y = Ad (g)Y.

Accordingly, given any element g ∈ G and any grading Y ∈ Y(W ), there
exist unique elements gY ∈ GY and g−1 ∈ exp(Lie−1(W )) such that

(2.21) g = g−1g
Y
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and g.Y = g−1.Y .
Suppose now that Y = Ȳ . Then, since every element of G acts by

real automorphisms on GrW , the corresponding factor gY appearing
in (2.21) actually belongs to GR. Furthermore, since M is type (II),
g−1 = eα can be factored as

(2.22) g−1 = (1 + α−1)(1 + α−2)

where α−j ∈ E−j(adY ). In particular, if g ∈ H then α−1 ∈ gl(VR) since
g = g−1g

Y acts by real automorphisms on Wk/Wk−2. Consequently,

(2.23) g = g−1g
Y =

{
(1 + α−1)g

Y
} {

(gY )−1(1 + α−2)g
Y

}

where the first term in curly braces on the right hand side of (2.23) be-
longs to GR, while the second term belongs exp(Lie−2(W )). Therefore,
by Theorem (2.9) and equation (2.18),

Lg∗ : TF (M) → Tg.F (M)

is an isometry for all F ∈ M. q.e.d.

Remark. The proof of Theorem (2.19) implies the following addi-
tional fact: If M is type (I) or (II) then h ∈ H, F ∈ M =⇒ Ip,q

(h.F,W ) =

h.Ip,q
(F,W ).

3. Limits of Mixed Hodge Structure

Let V → ∆∗ be a variation of graded-polarized mixed Hodge struc-
ture. Then, in contrast to the pure case, the period map of V can have
irregular singularities at the origin. The source of this apparent disparity
lies in the geometry of the associated classifying spaces. Namely, un-
like the pure case [34], the classifying spaces of graded-polarized mixed
Hodge structure M discussed in §2 need not have negative holomorphic
sectional curvature along horizontal directions.

Nevertheless, by comparison with the ℓ-adic case, Deligne conjectured
in [13] that the period map of a variation of mixed Hodge structure
arising from a family of complex algebraic varieties should not have such
irregular singularities. Furthermore, according to [13], there should
exist a category of “good” variations of mixed Hodge structures which
both contains all of the geometric variations and possesses the following
salient features of the pure case:

(a) The existence of the limiting mixed Hodge structure;
(b) In the geometric case, the limiting Hodge structure (a) should ad-

mit a de Rham theoretic construction in terms of the log complex
of the underlying morphism f : X → ∆;

(c) The existence of a functorial mixed Hodge structure on the coho-
mology H∗(X,V) of a good variation V → X;
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(d) Nilpotent Orbit Theorem: The period map of a good variation of
mixed Hodge structure should be asymptotic to the corresponding
nilpotent orbit.

In [37], Steenbrink and Zucker formulated the following definition of
a good variation:

Definition 3.1. A variation of graded-polarized mixed Hodge struc-
ture V → ∆∗ with unipotent monodromy is admissible if

(i) The limiting Hodge structure F∞ of V exists;
(ii) The relative weight filtration rW = rW (N, W ) exists.

The first evidence that this is indeed the correct definition is Deligne’s
proof in the appendix to [37] that conditions (i) and (ii) already im-
ply that (a) the pair (F∞, rW ) is a mixed Hodge structure, relative to
which N is a (−1,−1)-morphism. Additional evidence is provided by
the following two results [15], [33], special cases of which are proven in
[37]:

— Every geometric variation is admissible, and admits a de Rham
theoretic construction (b) of its limiting mixed Hodge structure
(F∞, rW );

— The cohomology H∗(X,V) of an admissible variation V → X ad-
mits a functorial mixed Hodge structure (c).

In this section, we consider the singularities (d) of the period map

(3.2) ϕ : ∆∗ → Γ\M
of an admissible variation V → ∆∗ with unipotent monodromy. To this
end, let p : U → ∆∗ denote the universal cover of the punctured disk by
the upper half-plane, and (s, z) be a pair of coordinates relative to which
p assumes the form s = e2πiz. Then, by virtue of the local liftablity of
ϕ, there exists a holomorphic, horizontal map F : U → M which makes
the following diagram commute:

(3.3)

U
F−−−−→ M

p

y
y

∆∗ ϕ−−−−→ Γ\M.

Consequently, by the commutativity of (3.3), the function

(3.4) ψ(z) := e−zN .F (z)

descends to a well defined map ψ(s) : ∆∗ → M̌. Moreover, we have the
following result:

Lemma 3.5. V is admissible if and only if both the relative weight

filtration rW and the limiting Hodge filtration

F∞ = lim
s→0

ψ(s)
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exist.

Thus, by the theorem of Deligne [37] quoted above, given an admissi-
ble variation V → ∆∗, each choice of coordinates (s, z) as above defines
an associated limiting mixed Hodge structure (F∞, rW ). Furthermore,
just as in §2, the pair (F∞, rW ) induces a functorial decomposition

(3.6) gC =
⊕

r,s

g
r,s
(F∞,rW )

such that
t∞ =

⊕

r<0

g
r,s
(F∞,rW )

is a vector space complement to the isotopy algebra gF∞

C in gC. As such,
near s = 0,

ψ(s) = eΓ(s).F∞

relative to a unique t∞-valued holomorphic function Γ(s) such that
Γ(0) = 0. Accordingly, by the definition of ψ(s),

(3.7) F (z) = ezNeΓ(s).F∞

for Im(z) >> 0. Moreover, just as in the pure case the period map F (z)
is asymptotic to the associated nilpotent orbit θ(z) = ezN .F∞ obtained
by setting Γ(s) = 0 in equation (3.7):

Definition 3.8. An admissible, 1-variable nilpotent orbit is a holo-
morphic map θ : C → M̌ of the form

θ(z) = ezN .F

where F ∈ M̌ and N is a nilpotent element of gR such that

— N(F p) ⊆ F p−1;
— θ(z) ∈ M for Im(z) >> 0;
— (Admissibility): The relative weight filtration rW (N, W ) exists.

Theorem 3.9 (Nilpotent Orbit Theorem [31]). Let V → ∆∗ be

an admissible variation of graded-polarized mixed Hodge structure with

unipotent monodromy. Then,

(1) θ(z) = ezN .F∞ is an admissible nilpotent orbit;

(2) There exist non-negative constants α, β and K such that Im(z) >
α =⇒ θ(z) ∈ M and

dM(F (z), θ(z)) < KIm(z)βe−2πIm(z).

The proof of Theorem (3.9) depends upon the following results [34],
[7], [14] about split orbits which play a fundamental role in §4–9:

Definition 3.10. A split orbit is an admissible nilpotent orbit
(ezN .F̂ , W ) for which the associated limiting mixed Hodge structure

(F̂ , rW ) is split over R.
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In the pure case, the notion of split and SL2-orbit coincide.Therefore,
by [34], [7] we have the following classification of such orbits:

Definition 3.11. Let H be a pure Hodge structure of weight k, and
e = (1, 0) and f = (0, 1) denote the standard basis of C2. Define S(1) to
be the standard representation of sl2(C) on C2 equipped with the pure
Hodge structure of weight one obtained by declaring

(3.12) ν+ = e + if, ν− = e − if

to be of type (1, 0) and (0, 1) respectively. Then, a representation of
sl2(C) on H is Hodge if it induces a morphism of Hodge structures from
sl2(C) ⊂ S(1) ⊗ S(1)∗ to End (H) = H ⊗ H∗.

Theorem 3.13 ([6], [7]). Let D be a classifying space of pure Hodge

structure, Fo ∈ D and ψ : SL2(R) → GR be a representation of SL2(R).
Then,

θ(g.
√
−1) = ψ(g).Fo

is an SL2-orbit if and only if ρ = ψ∗ is Hodge with respect to Fo.

Theorem 3.14 ([34]). Let H be a Hodge representation and S(k) =
Symk(S(1)). Then, H can be decomposed into a direct sum of irreducible

Hodge submodules. Furthermore, every irreducible Hodge representation

is isomorphic to one of the following types1

(a) H(d) ⊗ S(m), m ≥ 0;
(b) E(p, q) ⊗ S(n), p − q > 0, n ≥ 0;

where H(d) = C and E(p, q) = C2 denote the following Hodge struc-

tures, equipped with the trivial action of sl2(C):

— H(d) is weight −2d and type (−d,−d);
— E(p, q) is weight p + q, ν+ of type (p, q) and ν− of type (q, p).

Remark. Let H be a Hodge representation, and Q be a polarization
of H which is compatible with the given action of sl2(C). Then, the
decomposition of Theorem (3.14) can be chosen to be orthogonal with
respect to Q. Furthermore, each irreducible summand is isomorphic to
one of the standard tensor products (a) (b) equipped with the following
polarizations:

— H(d) : Q(1, 1) = 1;
— S(1) : Q(e, f) = 1, S(k) = Symk(S(1));
— E(p, q) : Q(e, f) = iq−p+1.

In the mixed case, a split orbit θ(z) = ezN .F̂ induces SL2-orbits
on GrW . Accordingly, each choice of grading Y of W defines a cor-
responding lift of the associated representations of sl2 on GrW to a
representation

ρY : sl2(C) → gC.

1By convention S(0) = H(0).
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In [14], Deligne showed how to use the limiting mixed Hodge structure of
θ(z) to make a distinguished choice of grading Y such that the associated
representation ρY has a number of very special properties. To state
Deligne’s result, let

(3.15) no =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
, n

+
o =

(
0 1
0 0

)

denote the standard generators of sl2(C) and rY denote the grading
(2.14) of the relative weight filtration rW defined by the Ip,q’s of the
limiting mixed Hodge structure of θ.

Theorem 3.16 ([14]). Let θ(z) = ezN .F̂ be a split orbit. Then, there

exists a unique, functorial R-grading Y of W such that

(1) [rY, Y ] = 0;
(2) [N − ρY (no), ρY (n+

o )] = 0.

Furthermore, if

(3.17) N = N0 + N−1 + N−2 + · · ·
denotes the decomposition of N with respect to the eigenvalues of adY
and

(3.18) N0 = ρ(no), H = ρ(h), N+
0 = ρ(n+

o )

denotes the sl2-triple defined by the representation ρ = ρY , then:

(a) For k > 0, N−k is either zero or a highest weight vector for ρ of

weight k − 2;
(b) H = rY − Y ;

(c) ezN0 .F̂ is an SL2-orbit (Data: Fo = eiN0 .F̂ , ψ∗ = ρ);

(d) Y preserves F̂ , Y(eiyN0 .F̂ ,W ) = Y , and Y(ezN .F̂ ,W ) = ezN .Y .

In particular, as consequence of (a), N−1 = 0 and [N0, N−2] = 0.

Proof. See [25], [31], [35]. q.e.d.

Remark. More generally, in [14] Deligne proved the following result:
Let rY be a grading of the relative weight filtration such that [rY, N ] =
−2N . Assume rY preserves W . Then, there exists a system of graded
representations Gr(ρ) and a unique functorial C-grading

(3.19) Y = Y (N, rY )

of W which satisfies conditions (1)–(2) and (a)–(b) of Theorem (3.16).
Accordingly, if (ezN .F, W ) is an admissible nilpotent orbit then appli-
cation of (3.19) to N and rY = Y(F,rW ) defines a corresponding grading

(3.20) Y = Y (F, W, N)

of W which preserves F .
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4. SL2-Orbit Theorem

Let X be a complex algebraic variety. Then, by [12, III, §8.2] the
hodge numbers hp,q of the mixed Hodge structure attached to Hn(X, C)
satisfy the following numerical conditions:

(i) hp,q = 0 unless 0 ≤ p, q ≤ n;
(ii) If X is proper, then hp,q = 0 unless p + q ≤ n;
(iii) If X is smooth, then hp,q = 0 unless p + q ≥ n;
(iv) If N = dim(X) and n ≥ N , then hp,q = 0 unless n−N ≤ p, q ≤ N .

Accordingly, by conditions (i) and (iv), given any complex algebraic
variety X, the mixed Hodge structures attached to H1(X; Z(1)) and
H2N−1(X; Z(N)) are of the form

(4.1) HC = I0,0 ⊕ I0,−1 ⊕ I−1,0 ⊕ I−1,−1

with GrW
−1 polarizable, and hence determine [12, III, §10.1] a corre-

sponding pair of 1-motives, called the Picard and Albanese 1-motives of
X. Likewise, given a family f : X → S of complex algebraic varieties,
the local systems Pic = R1

f∗(Z(1)) and Alb = R2n−1
f∗ (Z(n)) support

admissible variations of 1-motives of type (II) over a Zariski open sub-
set of S. Moreover, by conditions (ii) and (iii), Pic and Alb reduce to
variations of type (I) whenever the generic fiber of f is either proper or
smooth.

Returning now to the context of abstract variations, our main result
can be stated as follows: [proof occupies §6 –9.]

Theorem 4.2 (SL2-Orbit Theorem). Let ezN .F be an admissible

nilpotent orbit of type (I) or (II), with relative weight filtration rW =
rW (N, W ) and δ-splitting [cf. Theorem (2.16)]

(F, rW ) = (eiδ.F̂ , rW ).

Define h = Lie(H) [cf. Theorem (2.19)]. Then, there exists an element

ζ ∈ h ∩ ker(N) ∩ Λ−1,−1

(F̂ ,rW )

and a distinguished real analytic function g : (a,∞) → H such that

(a) eiyN .F = g(y)eiyN .F̂ ;

(b) g(y) and g−1(y) have convergent series expansions about ∞ of the

form

g(y) = eζ(1 + g1y
−1 + g2y

−2 + · · · )
g−1(y) = (1 + f1y

−1 + f2y
−2 + · · · )e−ζ

with gk, fk ∈ ker(adN0)
k+1 ∩ ker(adN−2);
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(c) δ, ζ and the coefficients gk are related by the formula

eiδ = eζ

(
1 +

∑

k>0

1

k!
(−i)k(ad N0)

k gk

)

where (N0, H, N+
0 ) denotes the sl2 triple attached to ezN .F̂ by Theorem

(3.16), and N = N0 + N−2 is the corresponding decomposition of N .

Moreover, ζ can be expressed as a universal Lie polynomial over Q(
√
−1)

in the Hodge components δr,s of δ with respect to (F̂ , rW ). Likewise,

the coefficients gk and fk can be expressed as universal, non-commuting

polynomials over Q(
√
−1) in δr,s and ad N+

0 .

By way of applications of this result, we now state three general con-
sequences of Theorem (4.2). To this end, we note that, in conjunction
with the nilpotent orbit theorem discussed in §3, one expects to be able
to reduce many questions regarding the asymptotic behavior of an ad-
missible variation V → ∆∗ to the case of split orbits via Theorem (4.2).
More precisely, one has:

Corollary 4.3. Let V → ∆∗ be an admissible variation of type (I) or

(II), with period map F (z) : U → M and nilpotent orbit ezN .F . Then,

adopting the notation of Theorem (4.2), there exists a distinguished,

real–analytic function γ(z) with values in h such that, for Im (z) suffi-

ciently large,

(i) F (z) = exNg(y)eiyN−2y−H/2eγ(z).Fo;

(ii) |γ(z)| = O(Im (z)βe−2πIm (z)) as y → ∞ and x restricted to a finite

subinterval of R, for some constant β ∈ R

where Fo = eiN0 .F̂ .

Proof. By equation (3.7), we can write

F (z) = ezNeΓ(s).F∞, s = e2πiz

relative to a distinguished gC–valued holomorphic function Γ(s) which
vanishes at s = 0. Therefore,

F (z) = ezNeΓ(s).F = exNeiyNeΓ(s).F

= exNeiyNeΓ(s)e−iyNeiyN .F = exNeΓ1(z)eiyN .F

where Γ1(z) = eiyNeΓ(s)e−iyN . By Theorem (4.2),

eiyN .F = g(y)eiyN .F̂ = g(y)eiyN−2y−H/2.Fo

since y−H/2.Fo = eiyN0 .F̂ . Consequently, if h(y) = g(y)eiyN−2y−H/2

then

F (z) = exNeΓ1(z)eiyN .F = exNeΓ1(z)h(y).Fo(4.4)

= exNh(y)h−1(y)eΓ1(z)h(y).Fo = exNh(y)eΓ2(z).Fo



20 G. PEARLSTEIN

where Γ2(z) = h−1(y)eΓ1(z)h(y). Also,

(4.5) |Γ2(z)| = O(Im (z)βe−2πIm (z))

since Γ(s) is a holomorphic function such that Γ(0) = 0, eiyN and eiyN−2

are polynomial in y, g(y) = O(1) and yH/2 acts as multiplication by an

integral power of y1/2 on the eigenspaces of H.
To complete the proof, we now recall that by equation (2.11), we may

write

(4.6) eΓ2(z) = gR(z)eλ(z)f(z)

where each factor is real–analytic, and

gR(z) ∈ GR, λ(z) ∈ Λ−1,−1
(Fo,W ), f(z) ∈ GFo

C .

Accordingly, for Im (z) sufficiently large, there exists a unique h-valued
function γ(z) such that

eγ(z) = gR(z)eλ(z).

By equation (4.4), γ(z) satisfies (i) since f(z) takes values in GFo
C . Like-

wise, γ(z) satisfies condition (ii) by virtue of equation (4.5) and the fact
that the decomposition (4.6) is real–analytic. q.e.d.

Remark. For variations of type (I), N = N0. For variations of type
(II), N = N0 + N−2 and ker(N) = ker(N0) ∩ ker(N−2).

Our first application of Theorem (4.2) is the following analog of the
1-variable norm estimates [34, Theorem (6.6)]:

Theorem 4.7. Let V → ∆∗ be an admissible variation of type (I) or

(II) with weight filtration W and relative weight filtration rW. Then,

adopting the notation of Theorem (4.2),

(a) The norm ‖σ(s)‖ of a flat, global section of V remains bounded as

s → 0;
(b) Over any angular sector A of ∆∗, a flat section σ of rWk satisfies

the estimate

‖σ(s)‖ = O((− log |s|) k
2 )

provided Wℓ = 0 for ℓ < 0.

More generally, if F (z) : U → M denotes the period map of V then, for

x = Re(z) restricted to a finite subinterval of R,

(4.8) v ∈ Ek(H) ∩ ker(N−2) =⇒ ‖v‖F (z) = O(y
k
2 )

as y → ∞.

Proof. The estimate (4.8) implies items (a) and (b). Indeed, by the
previous remark, after pulling back V to the upper half-plane, a flat
global section of V is represented by a constant vector

v ∈ ker(N) = ker(N0) ∩ ker(N−2).
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Therefore, upon decomposing v into its isotypical components with
respect to the representation of sl2 defined by (N0, H, N+

0 ), it then
follows that [since N−2 commutes with (N0, H, N+

0 )] each such com-
ponent is also contained in ker(N0) ∩ ker(N−2), and hence belongs to
Ek(H)∩ker(N−2) for some index k ≤ 0. Consequently, by (4.8), ‖v‖F (z)

is bounded.
Likewise, over any angular sector, a flat section of rWk is represented

by a constant vector v ∈ rWk. Therefore, recalling (3.16b) that

H = rY − Y

where rY is a grading of rW and Y is a grading of W which commutes
with rY , it then follows that

Wℓ = 0 for ℓ < 0 =⇒ rWk ⊆
⊕

j≤k

Ej(H).

Invoking (4.8), one then obtains (b).

To establish (4.8), suppose that V is a split orbit, i.e., F (z) = ezN .F̂ .
Then, given a vector v ∈ Ek(H) ∩ ker(N−2),

‖v‖ezN .F̂ = ‖v‖exNeiyN .F̂ = ‖e−xNv‖eiyN .F̂ = ‖v + v′(x)‖eiyN .F̂

where

v′(x) ∈
⊕

j≤k−2

Ej(H)

since N0 : Ea(H) → Ea−2(H), N−2(v) = 0, and exN = exN0exN−2 as
[N0, N−2] = 0. Accordingly, it suffices to show that

v ∈ Ek(H) ∩ ker(N−2) =⇒ ‖v‖eiyN .F̂ = y
k
2 ‖v‖eiN .F̂ .

However, since ezN .F̂ is a split orbit,

eiyN .F̂ = eiyN−2y−H/2eiN0 .F̂ .

Therefore, as H ∈ gR via (3.14), N−2 ∈ Λ−1,−1

(F̃ ,W )
for all F̃ ∈ M by (2.18),

and v ∈ ker(N−2),

‖v‖eiyN .F̂ = ‖v‖eiyN
−2y−H/2eiN0 .F̂ = ‖e−iyN−2v‖y−H/2eiN0 .F̂

= ‖v‖y−H/2eiN0 .F̂ = ‖yH/2v‖eiN0 .F̂ = y
k
2 ‖v‖eiN0 .F̂ .

More generally, given an admissible variation V → ∆∗ of type (I)
or (II), one can replicate the above argument mutatis mutandis using
Corollary (4.3). The only trick is to note that since fk ∈ ker(adN0)

k+1,

the term Ad (yH/2) (fk y−k) is at worst O (1) in y, and [N−2, g
−1(y)]

= 0 since all the terms of the series expansion of g−1(y) belong to
ker(adN−2). q.e.d.
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Theorem (4.7) shows that admissible variations of type (I) satisfy
norm estimates which are identical to the pure case. The next result
makes a similar assertion regarding the holomorphic sectional curvature:

Theorem 4.9. Let V → ∆∗ be an admissible variation of type (I) with

non-trivial monodromy logarithm N , and period map F (z) : U → M.

Then, the holomorphic sectional curvature of M along F (z) is negative,

and bounded away from zero for Im (z) sufficiently large.

Proof. By Corollary (2.13), the holomorphic sectional curvature of
M along u ∈ TF (M) is given by a formula of the form

R(u) =
hF (SF (u, ū)u, u)

h2
F (u, u)

relative to a GR-invariant tensor field S. Consequently, upon writing
F (z)

F (z) = exNg(y)y−H/2eγ(z).Fo

as per Corollary (4.3), one finds that [via the GR-invariance of S]

(4.10) R(F∗(d/dz)) =
hFo(SFo(θ(z), θ̄(z))θ(z), θ(z))

hFo(θ(z), θ(z))

where

(4.11) θ(z) = Ad (e−γ(z))(β−1,1(y) + β−1,0(y))

and β−1,1(y) and β−1,0(y) denote the Hodge components of the function

(4.12) β(y) = Ad (h−1(y))N, h(y) = g(y)y−H/2

with respect to the base point Fo = eiN .F̂ . In particular, as a conse-
quence of the proof of Theorem (4.2) for nilpotent orbits of type (I)
given in §8, β(y) admits a series expansion about infinity of the form

β(y) =
∑

n≥0

βny−1−n/2

with leading order term β0 = N . Therefore, by equations (4.10)–(4.12),

(4.13) lim
Im (z)→∞

R(F∗(d/dz)) =
hFo(SFo(ξ, ξ̄)ξ, ξ)

h2
Fo

(ξ, ξ)

where

(4.14) ξ = N−1,1 =
1

4
(iH + N0 + N+

0 ).

On the other hand, by Theorem (2.12),

hFo(SFo(ξ, ξ̄)ξ, ξ) = −hFo([ξ̄, ξ], [ξ̄, ξ]).

Thus,
lim

Im (z)→∞
R(F∗(d/dz)) < 0.

q.e.d.
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Remark. Theorem (4.9) is false for variations of type (II). In par-
ticular, if V is Hodge–Tate then R(F∗(d/dz)) = 0 for all z.

To put the next result in context, we recall that in the pure case,
Schmid’s nilpotent orbit theorem asserts the existence of the limit-
ing Hodge filtration of a variation of pure polarized Hodge structure
V → ∆∗. In the mixed case, this existence of the limiting Hodge fil-
tration is assumed. Less clear in the mixed case, however, is how the
corresponding grading

Y(s) = Y(F(s),W)

of W behaves as s → 0.

Theorem 4.15. Let V → ∆∗ be an admissible variation of type (I)
or (II) with period map F (z) : U → M. Then, the limiting grading

Y∞ = lim
Im (z)→∞

e−zN .Y(F (z),W )

exists, and coincides with the grading Y (F∞, W, N) defined by equation

(3.20).

Proof. By Corollary (4.3),

F (z) = exNg(y)eiyN−2y−H/2eγ(z).Fo

= exNg(y)eγ1(z)eiyN−2y−H/2.Fo = exNg(y)eγ1(z)eiyN .F̂

where

γ1(z) = Ad (eiyN−2y−H/2)γ(z)

is a h-valued function of order Im (z)βe−2πIm (z), and Fo = eiN0 .F̂ . Con-

sequently, if Y = Y (F̂ , W, N) then
(4.16)

e−zN .Y(F (z),W ) = e−iyNg(y)eγ1(z).Y(eiyN .F̂ ,W ) = e−iyNg(y)eγ1(z)eiyN .Y

since Y(eiyN .F̂ ,W ) = eiyN .Y by Theorem (3.16d). Setting

(4.17) γ2(z) = Ad (e−iyN )γ1(z)

it then follows from equations (4.16) and (4.17) that

(4.18) lim
Im (z)→∞

e−zN .Y(F (z),W ) = lim
Im (z)→∞

e−iyNg(y)eiyNeγ2(z).Y.

Therefore, by part (b) of Theorem (4.2),

e−iyNg(y)eiyN = eζe−iy ad N

(
1 +

∑

k>0

gky
−k

)

= eζ


1 +

∑

k>0

k∑

j=0

1

j!
(−i)j(adN0)

j gky
j−k



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since N = N0 + N−2, [N0, N−2] = 0, gk ∈ ker(adN0)
k+1 ∩ ker(adN−2)

and ζ ∈ ker(adN0)∩ker(adN−2). Consequently, by part (c) of Theorem
(4.2),

(4.19) lim
y→∞

e−iyNg(y)eiyN = eζ

(
1 +

∑

k>0

1

k!
(−i)k(adN0)

k gk

)
= eiδ.

On the other hand, by equation (4.17), γ2 (z) is also of order

Im (z)βe−2πIm (z) for some constant β. Therefore,

(4.20) lim
Im (z)→∞

eγ2(z) = 1.

Inserting equations (4.19) and (4.20) into equation (4.18), it then follows
that

Y∞ = lim
Im (z)→∞

e−zN .Y(F (z),W ) = eiδ.Y = Y (F∞, W, N)

since Y (F∞, W, N) = eiδ.Y (F̂∞, W, N) = eiδ.Y by the functoriality of
Y (cf. [31]). q.e.d.

Remark. By [25], Theorem (4.15) is also true for unipotent varia-
tions (e.g., the variations attached to fundamental group of a smooth
variety [21]) and variations for which the limiting mixed Hodge struc-
ture is split over R in some suitable coordinate system (e.g., the A–model
variation considered in mirror symmetry [30]).

5. Arakelov Geometry

Let M be a graded-polarized mixed Hodge structure. Then, moti-
vated by the construction of [19] described below, we define the height
of M to be

(5.1) h(M) = 2π‖δ‖
where δ denotes the splitting of M defined in §2, and ‖ ∗ ‖ denotes the
mixed Hodge norm of M .

To relate the height functional (5.1) to the standard archimedean
height pairing defined by [1], [2], [16], let X be a non-singular complex
projective variety of dimension n, and Z and W be a pair of algebraic
cycles in X of dimensions d = dim(Z) and e = dim(W ) such that

(i) Z and W are homologous to zero in X;
(ii) d + e = n − 1;
(iii) |Z| ∩ |W | = ∅.

Then, by §3 of [19], the mixed Hodge structure on H2d+1(X − |W |, |Z|;
Z(−d)) carries a canonical subquotient B = BZ,W with graded pieces

(5.2) GrW
0

∼= Z(0), GrW
−1

∼= H2d+1(X; Z(−d)), GrW
−2

∼= Z(1)
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such that

(5.3) h(BZ,W ) = |〈Z, W 〉|
where 〈Z, W 〉 denotes the archimedean height of the pair (Z, W ).

More precisely, via the cycles Z and W , one obtains canonical positive
generators 1 ∈ GrW

0 (B) ∼= Z(0) and 1∨ ∈ GrW
−2(B) ∼= Z(1). Moreover,

as a consequence of Proposition (3.2.13) in [19],

(5.4) δ(1) =
1

2π
〈Z, W 〉1∨

from which one then obtains (5.3) via the definition of the mixed Hodge
metric.

Likewise, given a smooth, proper morphism π : X → S of relative
dimension n, and a pair of flat, algebraic cycles Z and W in X of relative
dimensions d and e such that, for generic s ∈ S, Xs is smooth and
the triple (Xs, Zs, Ws) satisfies conditions (i)–(iii) above, one obtains a
corresponding height function

(5.5) h(s) = 〈Zs, Ws〉
over a Zariski dense open subset S′ of S.

Let D be a normal crossing divisor contained in the boundary of a
smooth partial compactification S′ of S′. In [19], Hain analyzed the
asymptotic behavior of (5.5) near D under the assumption that the
associated variation of mixed Hodge structure

(5.6) V → S′, Vs = BZs,Ws

induced constant variation of pure Hodge structure on GrW . In [27],
Lear computed the asymptotic behavior of (5.5) under the assumption
that S is a curve using the theory of normal functions.

In this section, we consider the asymptotic behavior of (5.5) near a
normal crossing divisor D about which V degenerates with unipotent
monodromy by applying Theorem (4.2) to the 1-parameter degenera-
tions f∗(V) obtained by pulling back V along a holomorphic map f
from the unit disk ∆ into S′.

To this end, let us assume for the moment that dim(S) = 1 and p is a
point about which V degenerates with unipotent monodromy. By (5.4),
the corresponding height function (5.5) is then given by the formula

(5.7) δ(1) =
1

2π
h(s)1∨

where δ denotes the section of V ⊗ V∗ defined by the pointwise appli-
cation of the splitting (2.16) to the fibers of V, and 1 and 1∨ denote
the generators of GrW

0 (V) ∼= Z(0) ⊗ OS′ and GrW
−2(V) ∼= Z(1) ⊗ OS′

respectively.
As usual, for the purpose of calculating the asymptotic behavior of

(5.5) near p, we replace V by the corresponding period map F : U → M
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obtained restricting V to a deleted neighborhood ∆∗ of p. Using the
nilpotent orbit theorem discussed in §3, we can then replace F (z) by
the corresponding nilpotent orbit

(5.8) θ(z) = ezN .F∞

since we are only interested in calculating the leading order terms of
(5.5). Invoking Theorem (4.2), we can then calculate the asymptotic
behavior of h(s) modulo terms that remain bounded as s → 0 (recall

s = e2πiz) by replacing θ(z) by the corresponding split orbit θ̂(z) =

ezN .F̂∞.
Indeed, by Corollary (4.3), for any admissible period map F (z) of type

(II) with unipotent monodromy, the corresponding gradings Y(F (z),W )

and Y(θ̂(z),W ) are related by an equation of the form

(5.9) Y(F (z),W ) = Y(θ̂(z),W ) + ǫ(z)

where ǫ(z) is a real analytic function which remains bounded as y =
Im(z) → ∞ and x = Re(z) restricted to any finite subinterval of R.
Moreover, by (3.16d),

(5.10) Y(θ̂(z),W ) = ezN .Y = Y + 2zN−2

where Y is a real grading of W , and hence

(5.11) δ(θ̂(z),W ) = yN−2

since

(5.12) Y(F,W ) − Y (F,W ) = 4iδ(F,W )

for any mixed Hodge structure of type (II). Therefore, by equation
(5.9)–(5.12),

(5.13) δ(F (z),W ) = yN−2 +
1

2
Im (ǫ(z)).

Inserting equation (5.13) into (5.7), it then follows that, near s = 0,

(5.14) h(s) = −µ log |s| + η(s)

where N−2(1) = µ 1∨ and η(s) is a real analytic function which remains
bounded as s → 0.

Remark. More generally, it follows from (5.9)–(5.13) that if hV(s)
denotes the height function (5.1) attached to an admissible variation
V → ∆∗ of type (II) with unipotent monodromy, then

hV(s) = −µ log |s| + η(s)

where µ = ‖N−2‖Fo denotes the norm of N−2 with respect to the base
point Fo ∈ M defined in Corollary (4.3), and η(s) is once again a real-
valued analytic function which remains bounded as s → 0.
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Now, according to the above recipe, in order to calculate the asymp-
totic behavior of the height paring 〈Zs, Ws〉, it would seem that one must
compute N , W , and F∞, along with the corresponding splittings and
gradings. This is not necessary. Indeed, these auxiliary object appear
in equation (5.14) only via the decomposition

(5.15) N = N0 + N−2

which can computed directly from the pair (N, W ) as follows: Let Y
be the grading appearing in (5.10), relative to which N decomposes as
(5.15) according to the eigenvalues of ad Y , and Y ′ be any other grading
of W . Then, since Lie−1(W ) acts transitively on the set of all gradings
of W ,

(5.16) Y ′ = Y + α−1 + α−2

where αj belongs to the j eigenspace Ej(ad Y ) of adY . Furthermore,
because N0 acts trivially on E0(Y ) and E−2(Y ),

(5.17) [N0, α−2] = 0.

Therefore,

(5.18) [Y ′, N ] = [Y + α−1 + α−2, N0 + N−2] = −2N−2 + [α−1, N0]

by virtue of equation (5.17) and the short length of W , which forces
both [α−1, N−2] and [α−2, N−2] = 0. Accordingly, if Y ′ is any grading
of W such that [Y ′, N ] lowers W by 2 (i.e., [α−1, N0] = 0) then N−2 =
−1

2 [Y ′, N ]. Thus, in summary, we obtain the following result:

Theorem 5.19. Let h(s) denote the height function (5.5) attached to

flat family of algebraic cycles Zs, Ws ⊆ Xs over a smooth curve S. Let

p be a point at which the corresponding variation V defined by equation

(5.6) degenerates with unipotent monodromy. Let N denote the local

monodromy of V about p, and Y ′ be any grading of the weight filtration

W of V such that [Y ′, N ] lowers W by 2. Define N−2 = −1
2 [Y ′, N ].

Then, near s = 0,

h(s) = −µ log |s| + η(s)

where N−2(1) = µ 1∨ and η(s) is a real analytic function which remains

bounded as s → 0.

Proof. It remains only to justify (5.9), from which Theorem (5.19)
then follows from equations (5.10)–(5.17) and accompanying arguments.
To verify (5.9), recall that by Corollary (4.3), near the given puncture,
the period map F (z) of the variation (5.6) assumes the form

(5.20) F (z) = exNg(y)eiyN−2y−H/2eγ(z).Fo

where H ∈ gR commutes with the grading Y = Y(Fo,W ) appearing in
equation (5.10), and γ(z) is a real analytic, h-valued function which is
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of order yβe−2πy as y → ∞ and x is restricted to a finite subinterval of
R. Therefore,

Y(F (z),W ) = exNg(y)eiyN−2y−H/2eγ(z).Y(Fo,W )(5.21)

= exNg(y)eiyN−2(y−H/2eγ(z)yH/2)y−H/2.Y(Fo,W )

= exNg(y)eiyN−2eγ1(z).Y(Fo,W )

where γ1(z)=Ad (y−H/2)γ(z) is a real analytic function of order yβ′

e−2πy

for some constant β′ ∈ R. Accordingly,

(5.22) eγ1(z).Y(Fo,W ) = eγ1(z).Y = Y + γ2(z)

where γ2(z) is again of order yβ′

e−2πy. Inserting (5.22) into (5.21), it
then follows that

Y(F (z),W ) = exNg(y)eiyN−2 .(Y + γ2(z))

(5.23)

= exNg(y).(Y + 2iyN−2 + γ3(z))

= (exNg(y)e−xN )exN .(Y + 2iyN−2 + γ3(z))

= (exNg(y)e−xN ).(Y + 2zN−2 + γ4(z))

= (exNg(y)e−xN ).(Y + γ4(z)) + (exNg(y)e−xN ).(2zN−2)

where, for some constant β′′ ∈ R, γ3(z) and γ4(z) are real analytic

functions of order yβ′′

e−2πy as y → ∞ with x restricted to a finite
subinterval of R. Moreover, by Theorem (4.2), the function g(y) admits
a convergent series expansion near y = ∞ of the form

(5.24) g(y) = eζ(1 + g1y
−1 + g2y

−2 + · · · )
where ζ, g1, g2, · · · ∈ ker(adN−2), and hence

(5.25) g(y).N−2 = Ad (g(y))N−2 = N−2.

Therefore,

(5.26) (exNg(y)e−xN ).(2zN−2) = 2zN−2

since N = N0 + N−2 and [N0, N−2] = 0. Likewise, because of the series
expansion (5.24) and the fact that ζ ∈ ker(N0) ∩ ker(N−2) by Theorem
(4.2),

(5.27) lim
y→∞

exNg(y)e−xN = eζ

independent of x. Consequently,

(5.28) (exNg(y)e−xN ).(Y + γ4(z)) = Y + ǫ(z)

where ǫ(z) is a real analytic function which remains bounded as y → ∞
and is x restricted to a finite subinterval of R. Inserting (5.26) and
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(5.28) into (5.23), it then follows that

Y(F (z),W ) = Y + 2zN−2 + ǫ(z) = Y(θ̂(z),W ) + ǫ(z)

as required. q.e.d.

Lemma 5.29. Under the hypothesis of Theorem (5.19), µ ∈ Q.

Proof. It is sufficient to show that

(5.30) VQ = Qf0 ⊕ UQ ⊕ Qf−2

where

(a) f0 projects to 1 ∈ GrW
0 ;

(b) UQ is an N -invariant subspace of W−1(VQ);
(c) f−2 projects to 1∨ ∈ GrW

−2.

Indeed, suppose that such a decomposition exists, and let Y ′ be any
grading of W such that [Y ′, N ] lowers W by 2. Then, shows that

(5.31) N(e0) = µ f−2

where e0 is the element of E0(Y
′) which projects to 1 ∈ GrW

0 . On the
other hand, since e0 and f0 have the same image in GrW

0 , we can write

(5.32) e0 = f0 + uC + bf−2

where uC ∈ UQ⊗C and b ∈ C. Inserting equation (5.32) into (5.31) and
recalling that f−2 generates W−2 ⊆ ker(N), it then follows that

N(f0) = −N(uC) + µ f−2.

Since both N and f0 are rational, it then follows from (5.30) and the
N -invariance of UQ that both −N(uC) and µ f−2 belong to VQ. In
particular, µ ∈ Q since f−2 ∈ VQ.

To prove the existence of a decomposition (5.30) of VQ with properties
(a)–(c), observe that it is sufficient to show that

(5.33) f−2 /∈ N(W−1(VQ)).

Indeed, since N is nilpotent, its restriction to any N -invariant subspace
of VQ can be put in Jordan normal form. In particular, there exists a
Jordan basis of cycles γ1∪· · ·∪γr for the action of N on W−1(VQ). Since
N(f−2) = 0, equation (5.33) implies that γj = {c f−2} for index some j
and some rational coefficient c. The remaining cycles γk 6=j generate the
desired subspace UQ of W−1(VQ).

To complete the proof, we now verify (5.33) using the admissibility of
V. More precisely, by the previous remarks, we know that there exists a
real grading Y of W such that N = N0 +N−2 relative to the eigenvalues
of adY . Since W is of type (II), it then follows that

W−1(VC) = E−1(Y ) ⊕ W−2(VC)
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is an N -invariant splitting of W−1(VC). Therefore, since f−2 ∈ ker(N)
generates W−2(VC) and E−1(Y ) is N -invariant, f−2 /∈ N(W−1(VC)).

q.e.d.

Returning now to the general setting (5.5), let D be a normal crossing
divisor about which V degenerates with unipotent monodromy. Let
(s1, . . . , sm) be local coordinates on S′ relative to which D assumes the
form s1 · · · sm = 0 and f : ∆ → S′ be a holomorphic map of the form

(5.34) f(t) = (ta1f1(t), . . . , t
amfm(t))

where a1, . . . , am are nonnegative integers which are not all 0 and f1, . . . ,
fm are nonvanishing holomorphic functions on ∆. Let Nj denote the
monodromy logarithm of V about sj = 0 and N denote the monodromy
of f∗(V) about t = 0. Then,

(5.35) N =
m∑

j=1

ajNj

and hence

f∗(h)(t) = −µa1,...,am log |t| + η(t)

where η(t) is a real analytic function which remains bounded as t → 0
and

(5.36) µa1,...,am 1∨ = −1

2
[Y ′, N ](1)

for any grading Y ′ of W such that [Y ′, N ] lowers W by 2.

Theorem 5.37. Let µ = µa1,...,am. Then, µ belongs to Q(a1, . . . , am)
and is homogeneous of degree 1 in a1, . . . , am.

Proof. That µ is homogeneous of degree 1 in a1, . . . , am follows im-
mediately from equations (5.35) and (5.36). To see that µ is rational
in a1, . . . am, recall that the asymptotic behavior of the height depends
only on the asymptotic behavior of the δ-splitting of the approximating
split orbit F (z) = ezN .F̂ . Therefore, since F (z) depends polynomially
on z and N , and the δ-splitting is determined by taking sums and inter-
sections of F (z), F̄ (z) and W , it then follows that µ depends rationally
on a1, . . . , am. Finally, since by Lemma (5.29) µ assumes rational values
at every m-tuple of positive integers, µ is defined over Q. q.e.d.

In light of Theorem (5.37) the simplest possible asymptotic behavior
that h can exhibit as s approaches D along various curves of the form
(5.34) is for µ to be a linear function of a1, . . . , ar. In this case, we shall
say that h(s) has no jumps along D.

By Theorem (5.19), a sufficient condition for h(s) to have no jumps
along D is the existence of a grading Y of W such that [Y, Nj ] lowers
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W by 2 for all j. Indeed, in this case

µa1,...,ar 1∨ = −1

2


Y,

∑

j

ajNj


 (1).

The next result gives a sufficient condition for the existence of such a
grading Y which depends only on the monodromy of the local system

GrW−1(VZ) = [R2d+1
π∗ (Z(d))]∗

defined by the morphism π : X → S, and not the particular choice of
flat cycles Z and W ⊆ X.

Theorem 5.38. Let T̃ denote the monodromy of R2d+1
π∗ (Z) around

a holomorphic disk f(∆∗) of type (5.34) with all coefficients aj > 0.

Suppose that T̃ has no Jordan blocks of rank 2. Then, there exists a

grading Y of W such that [Y, Nj ] lowers W by 2 for all j, and hence the

corresponding height function h(s) has no jumps along D.

Proof. The stated condition on T̃ is equivalent to the following condi-
tion on the monodromy cone C = {a1N1+ · · ·+amNm | a1, . . . , am > 0}:
Let N ∈ C and Ñ denote the induced action of N on GrW−1. Then,

ker(Ñ) ∩ Im (Ñ2) = ker(Ñ) ∩ Im (Ñ).

Next, recall that since V is of geometric origin, the data (F∞, W, N1,
. . . , Nm) define an infinitesimal mixed Hodge module in the sense of
Kashiwara [26], and hence every element N of C defines the same rela-
tive weight filtration

rW = rW (N, W ).

Furthermore, (F∞, rW ) is a mixed Hodge structure with respect to
which each Nj is a (−1,−1)-morphism. Let Y be the grading of W
defined by application of (3.19) to N and rY = Y(F∞,rW ). Then, rela-
tive to adY , N = N0 + N−2. Likewise, due to the short length of W ,
each Nj decomposes as

Nj = (Nj)0 + (Nj)−1 + (Nj)−2

relative to adY . Accordingly, the condition [Y, Nj ](W0) ⊆ W−2 is equiv-
alent to the assertion that (Nj)−1 = 0 for each j.

To complete the proof let Y = Y (F, W, N) denote the grading (3.20)
of W attached to the nilpotent orbit ezN .F∞ and ρ be the corresponding
representation of sl2(C) defined by the sl2-pair N0 and H = rY − Y .
Let V (k) denote the isotypical component of ρ generated by the linear
span of all irreducible submodules of highest weight k. Then, by the
above remarks, it is sufficient to show that

(a) ker(Ñ) ∩ Im (Ñ2) = ker(Ñ) ∩ Im (Ñ) =⇒ V (1) = 0;
(b) V (1) = 0 =⇒ (Nj)−1 = 0.
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To verify (a), observe that since the action ρ preserves the eigenspaces
of Y we have

V (k) =
⊕

j

V (k) ∩ Ej(Y ).

Furthermore, since N acts trivially on GrW
0

∼= E0(Y ) and GrW
−2

∼=
E−2(Y ), the equality

(5.39) ker(N0) ∩ Im (N2
0 ) = ker(N0) ∩ Im (N0)

holds on E0(Y ) and E−2(Y ). On E−1(Y ) condition (5.39) is equivalent

to the stated condition on Ñ . Therefore, it is sufficient to prove that
condition (5.39) implies that V (1) = 0, or equivalently, if V (1) 6= 0 then
(5.39) fails. Accordingly, suppose that U is an irreducible representation
of highest weight 1. Then N2

0 (U) = 0 whereas N0(U) is non-zero and
contained in ker(N0), which violates (5.39).

To establish (b), observe that (Nj)−1 ∈ ker(N0) ∩ E−1(ad H) since
[N, Nj ] = 0, H = rY − Y and [rY, Nj ] = −2Nj . Therefore, if e0 is a
generator of E0(Y ) ⊂ V (0) then

(5.40) u = (Nj)−1(e0) ∈ ker(N0)

because ρ acts trivially on E0(Y ), and hence

N0(u) = N0(Nj)−1(e0) = [N0, (Nj)−1]e0 = 0.

Likewise,

(5.41) u ∈ E−1(H)

since

H(u) = H(Nj)−1(e0) = [H, (Nj)−1]e0 = −(Nj)−1(e0) = −u.

Combining (5.40) and (5.41), it then follows that u ∈ V (1).
Similarly, since ρ acts trivially on E−2(Y ) ⊂ V (0), if v ∈ Eℓ(H) ∩

E−1(Y ) and (Nj)−1(v) is non-zero then ℓ = 1 since

−(Nj)−1(v) = [H, (Nj)−1]v = −(Nj)−1H(v) = −ℓ(Nj)−1(v).

Furthermore, (Nj)−1(v) 6= 0 implies that v 6∈ Im(N0) since

v = N0(v
′) =⇒ (Nj)−1(v) = (Nj)−1N0(v

′) = [N0, (Nj)−1]v
′ = 0

and hence v ∈ V (1). Thus, V (1) = 0 =⇒ (Nj)−1 = 0. q.e.d.

Corollary 5.42. If the local monodromy of GrW−1(VZ) about D is

trivial then the corresponding height function (5.5) has no jumps along

D.

A special case of (5.42), originally considered by Richard Hain [19],
is when Xs remains smooth and only the cycles Zs and Ws degenerate.
More recently [20], Hain and Reed have used the height of the Ceresa
cycle C − C− to study the Arakelov geometry of the moduli space Mg

of smooth complex projective curves of genus g > 2. Briefly, given a
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curve C ∈ Mg and a pair of positive integers a and b such a+ b = g−1,
define

h(C) =
〈
C(a) − C

(a)
− , C(b) − C

(b)
−

〉

to be the height pairing attached to the Ceresa cycles in Jac(C) deter-
mined by the a’th and b’th symmetric power of C. The height function
h(C) can be used to construct a metric on the (8g + 4)’th power of
the determinant line bundle L over Mg. Comparison of this metric to

the standard Hodge metric on L⊗(8g+4) then defines [modulo an addi-
tive constant] a function βg : Mg → R which is an analog of Faltings
delta function δg. To prove that dβg and dδg are linearly independent,
Hain and Reed compute the asymptotic behavior of βg and δg along the

boundary divisor ∆ of Mg in Mg. Recall that ∆ is a union of compo-
nents ∆h such that, for h > 0, the generic point of ∆h corresponds to a
reducible curve C0 with 1-node with components of genera h and g−h.
In particular, for g > 1 it is well known that the geometric monodromy
of a family of curves Ct degenerating to C0 at t = 0 acts trivially on
H1(Ct). Applying Corollary (5.42) it then follows that the metric con-

sidered by Hain and Reed extends continuously to M̃g = Mg − ∆0,
where ∆0 is the divisor for which the generic point represents an irre-
ducible curve with a normalization of genus g − 1. Theorem (5.19) also
implies that this metric extends continuously to any holomorphic arc
meeting ∆0 transversely (cf. Theorem 3 in [20]).

Remark. More generally, Theorem (5.19) implies the unpublished
result from Lear’s thesis [27] stated above, which appears as a crucial
lemma in §8 of [20]. In [3], the author and P. Brosnan use Theorem
(5.19) to compute the asymptotics of the height of the Ceresa cycle
along the divisor ∆0 ⊂ Mg.

A further source of families of varieties for which the height does
not jump are furnished by smooth complete intersections in Pn of even
dimension: By the Lefschetz theorems, all of the odd cohomology groups
of such a variety are zero. A general formula for the ranks of the Jordan
blocks of the local monodromy of the middle cohomology of a semistable
degeneration may be found in [28].

For 1-cycles in a family of hypersurfaces of degree d in P4 we have
the following results: For d = 1, 2 there are no jumps since H3 = 0.
For d = 3, 4 we have h3,0 = 0, h2,1 6= 0, and hence Theorem (5.38)
is applicable only if the monodromy operator T is of finite order. For
d ≥ 6 the height does not jump as a consequence of Mark Green’s
result [17] that for a generic smooth hypersurface in P4 of degree ≥ 6
the image of the Abel-Jacobi map from the Chow group of 1-cycles
which are homologous to zero mod rational equivalence into the third
intermediate Jacobian is contained in the torsion subgroup. This leaves
the quintic threefolds, which are Calabi-Yau manifolds. Although much
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has been said about the degenerations of such manifolds in general,
specific examples of 2-parameter degenerations appear to be relatively
rare in the literature. Of the examples considered in [5] and [9] only
the family of quintics

(5.43) (y5
1 + · · · + y5

y) − ay3
4y

2
5 − by2

4y
3
5 = 0

has the correct monodromy to avoid jumps.

To close this section, we now present two related examples which
show that when the hypothesis of Theorem (5.38) is violated the height
may or may not jump:

Example 5.44. Let VZ be an integral lattice of rank 4, with basis
{e0, e, f, e−2}, and N1, N2 denote the endomorphisms of VZ defined by
the matrices

N1 =




0 0 0 0
0 0 0 0
1 1 0 0
1 1 0 0


 , N2 =




0 0 0 0
0 0 0 0
−1 1 0 0
1 −1 0 0


 .

Then, the nilpotent orbit ϕ(s1, s2) = e
1

2πi
(log(s1)N1+log(s2)N2).F∞, defined

by the filtrations

W0(VZ) = VZ

W−1(VZ) = Ze ⊕ Zf ⊕ Ze−2

W−2(VZ) = Ze−2

W−3(VZ) = 0

F−1
∞ = VZ ⊗ C

F 0
∞ = Ce0 ⊕ Ce

F 1
∞ = 0

is admissible, and graded-polarizable. Direct calculation shows that the
associated height function (5.5) is given by the formula

h(s1, s2) =
(log |s1/s2|)2 − (log |s1s2|)2

log |s1s2|
.

Setting (s1, s2) = (ta1 , ta2), it then follows that

µ =
4a1a2

a1 + a2

and hence h(s1, s2) jumps along D.

Example 5.45. In Example (5.44), redefine

N1 =




0 0 0 0
0 0 0 0
0 1 0 0
1 1 0 0


 , N2 =




0 0 0 0
0 0 0 0
0 1 0 0
1 −1 0 0


 .

Then,
h(s1, s2) = − log |s1s2|

and hence µ = a1 + a2. Accordingly, h(s1, s2) has no jumps along D.
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The following property distinguishes Examples (5.44) and (5.45): By
Theorem (5.19) a sufficient condition for the height not to jump is the
existence of a common vector eo ∈ V such that

(a) vo projects to 1 ∈ GrW
0 ;

(b) Nj ∈ W−2 for each j.

In this case,

(a1N1 + · · · + arNr)(vo) = µa1,...,am1∨.

In the case of Example (5.45) the vector eo satisfies conditions (a)–
(b) and µ = a1 + a2. In contrast, there is no such vector vo for the
monodromy cone of Example (5.44).

Remark. Conditions (a) and (b) have the following cohomological
interpretation: Let x1, . . . , xm be commuting variables and A be a left
Q[x1, . . . , xm]-module. Then, the Q-vector spaces

Bp =
⊕

1≤j1<···<jp≤m

xj1 . . . xjp(A)

form a complex with respect to the differential which maps the sum-
mands of Bp to the summands of Bp+1 via the rule

d = (−1)s−1xjs : xj1 · · · x̂js · · ·xjp(A) → xj1 · · ·xjp(A).

When A = Hk(Xt) is the typical fiber of a variation of Hodge struc-
ture V with monodromy logarithms N1, . . . , Nm along a divisor D and
xj(a) = Nj(a) then H∗(B•) coincides [8] with the local intersection co-
homology of V along D. In the setting of the previous paragraph with
A = W0/W−2 and xj the induced action of Nj , the desired vector vo

is simply an element of H0(B•) which projects to a generator of GrW
0 .

This suggests the asymptotic behavior of the height is controlled by the
local intersection cohomology of W0/W−2 along the boundary divisor.

6. Nahm’s Equation

Let K be a compact real Lie group. Then, Nahm’s equation for K is
the system of ordinary differential equations given by the gradient flow
of the 3-form

(6.1) φ(T1, T2, T3) = 〈T1, [T2, T3]〉
on κ = Lie (K) defined by a choice of bi-invariant metric 〈·, ·〉 on K.
Equivalently, a triple of κ-valued functions (T1, T2, T3) is a solution of
Nahm’s equation if and only if

(6.2)
dTi

dy
+ [Tj , Tk] = 0

for every cyclic permutation (i j k) of (1 2 3).
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More generally, given a complex Lie algebra a, a triple of a-valued
functions (T1, T2, T3) is said to be a solution of Nahm’s equation pro-
vided they satisfy the system of differential equations (6.2). Solutions
to Nahm’s equation are related to representations of sl2(C) as follows:
Let {τ1, τ2, τ3} be a basis of sl2(C) = su2 ⊗ C such that

(6.3) τi = [τj , τk]

for every cyclic permutation (i j k) of (1 2 3) and ρ : sl2(C) → a be a
Lie algebra homomorphism. Then, the triple

Ti(y) = ρ(τi)y
−1

is a solution of (6.2). Conversely, given a solution (T1, T2, T3) of Nahm’s
equation which has a simple pole at y = 0, the linear map ρ : sl2(C) → a

defined by setting

ρ(τi) = Res(Ti)

is a Lie algebra homomorphism.

In [34], Schmid showed that a nilpotent orbit of pure, polarized Hodge
structure gives rise to a solution

(6.4) Φ : (a,∞) → Hom(sl2(C), gC), Φ(y)τi = Ti(y)

of Nahm’s equation. In this section, we show that a nilpotent orbit

(6.5) θ(z) = ezN .F∞

of graded-polarized mixed Hodge structure gives rise to a solution of
a generalization of Nahm’s equation which encodes how the extension
data of θ(z) interacts with the nilpotent orbits of pure Hodge structure
induced by θ(z) on GrW .

To this end, let M be a classifying space of graded-polarized mixed
Hodge structure. Define D to be the direct sum of classifying spaces of
pure, polarized Hodge structure onto which M projects via the map

F 7→ FGrW .

Let Y−2(W ) be the affine space consisting of all gradings Y of W such
that [cf. Theorem (2.17)]:

(6.6) Y − Ȳ ∈ Lie−2(W )

and ιY denote the isomorphism GrW ∼= VC associated to Y ∈ Y−2(W ).
Then:

Theorem 6.7. The space X = D × Y−2(W ) is a complex manifold

upon which the Lie group H [cf. Theorem (2.19)] acts transitively by

automorphisms. Furthermore, the correspondence

(6.8) F = π({Hr,s}, Y ) ⇐⇒ F p =
⊕

a≥p

ιY (Ha,b)
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defines a H–equivariant projection map π : X → M with real analytic

section

(6.9) σ(F ) =
(
FGrW , Y(F,W )

)
.

Proof. The only subtle point is the assertion that σ is a real–analytic
section. To prove this, observe that by part (c) of Theorem (2.4), the
grading Y(F,W ) defined by the Ip,q’s of (F, W ) takes values in Y−2(W ).
Consequently, equation (6.9) defines a section of X . To prove that σ is
real-analytic, recall [7] that

Ip,q = F p ∩ Wp+q ∩


F̄ q ∩ Wp+q +

∑

j>0

F̄ q−j ∩ Wp+q−1−j




and hence the decomposition (2.5) is real-analytic with respect to the
point F ∈ M. q.e.d.

Next, following [34], we note that each choice of base point Fo defines
a principal bundle P over X with connection ∇:

Theorem 6.10. Let Fo ∈ MR and xo = σ(Fo). Then, the vector

space [cf. Theorem (2.12)]

h′ = (η+ ⊕ Λ−1,−1 ⊕ η−) ∩ h

is an Ad (Hxo)–invariant complement to hxo in h, and hence defines a

connection ∇ on the principal bundle

Hxo → H → H/Hxo

over X ∼= H/Hxo.

Proof. Direct calculation shows that since Fo ∈ MR, hxo = η0 ∩ h

and hence h′ is a vector space complement to hx0 in h. To see that h′ is
invariant under the action of Ad (Hx0), let h ∈ Hxo . Then, h preserves
Fo since

h.Fo = h.π(xo) = π(h.xo) = π(xo) = Fo.

Likewise, h = h̄ since h acts by real automorphisms on GrW and pre-
serves the real grading Y(Fo,W ). Consequently, h is a morphism of
(Fo, W ) and hence preserves each summand appearing in the definition
of h′. q.e.d.

Thus, by virtue of the above remarks, each choice of base point Fo ∈
MR defines a lift of θ(iy) to a function h(y) : (a,∞) → H such that:

(a) h(y).xo = σ(θ(iy));
(b) h is tangent to ∇.

Theorem 6.11. Let L denote the endomorphism of h defined by the

rule:

L |η+
= +i, L |η0

= 0, L |η−⊕Λ−1,−1 = −i.
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Then, the function h(y) defined above satisfies the differential equation

(6.12) h−1(y)
d

dy
h(y) = −L Ad (h−1(y))N.

Proof. Schmid’s original derivation [34, Lemma (9.8)] of Nahm’s
equation for nilpotent orbits of pure, polarized Hodge structure shows
that equation (6.12) holds modulo Lie−1(W ). Consequently, it is suffi-
cient to verify that equation (6.12) holds modulo the subalgebra gY

C =

Lie (GY
C ), Y = Y(Fo,W ) since

gC = gY
C ⊕ Lie−1(W ).

To this end, note that by definition YeiyN .F∞
= Ad (h(y))Y . Upon dif-

ferentiating both sides of this equation with respect to y and simplifying
the result, it then follows that:

(6.13) Ad (h−1(y))
d

dy
Y(eiyN .F∞,W ) =

[
h−1(y)

d

dy
h(y), Y

]
.

Therefore, if z = x + iy:

Ad (h−1(y))
d

dy
Y(eiyN .F∞,W )(6.14)

= i Ad (h−1(y))

(
∂

∂z
− ∂

∂z̄

)
Y(ezN .F∞,W )

∣∣∣∣
z=iy

.

To compute ∂
∂z Y(ezN .F∞,W ) and ∂

∂z̄ Y(ezN .F∞,W ), we observe that as a

consequence of equation (5.19) in [30]:

∂

∂w
Y(ewξ.F,W )

∣∣∣∣
w=0

= [πt(ξ), Y(F,W )],(6.15)

∂

∂w̄
Y(ewξ.F,W )

∣∣∣∣
w=0

= [π+(πt(ξ)), Y(F,W )]

for any point F ∈ M and any element ξ ∈ Lie (GC), where π+ and πt

denote the projection operators2 with respect to F defined in Theorem
(2.12). In particular, upon setting F = eiyN .F∞ it then follows from
equations (6.14) and (6.15) that:
(6.16)

Ad (h−1(y))
d

dy
YeiyN .F∞

= iAd (h−1(y))[πt(N) − π+(πt(N)), YeiyN .F∞
].

On the other hand, if π0 denotes projection onto η0 with respect to
F = eiyN .F∞ then

N = π+(N) + π0(N) + πt(N).

Consequently, since N is defined over R:

N = N̄ = π+(N) + π0(N) + πt(N)

2In [30], we used the alternative notation tF = qF and πt = πq.
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and hence π+(N) = π+(πt(N)). Accordingly, equation (6.16) may be
rewritten as

Ad (h−1(y))
d

dy
YeiyN .F∞

(6.17)

= iAd (h−1(y))[πt(N) − π+(N), YeiyN .F∞
]

= i[Ad (h−1(y)){πt(N) − π+(N)}, Ad (h−1(y))YeiyN .F∞
]

= i[Ad (h−1(y)){πt(N) − π+(N)}, Y ]

since Y(eiyN .F∞,W ) = Ad(h(y))Y .
By construction:

(6.18) h(y).Ip,q
(F0,W ) = Ip,q

(eiyN .F∞,W )

and hence Ad (h(y)) : g
r,s
(F0,W ) → g

r,s
(eiyN .F∞,W )

. Consequently,

iAd (h−1(y)){πt(N) − π+(N)}
= i π̂t(Ad (h−1(y))N) − i π̂+(Ad (h−1(y)N))

= −L Ad (h−1(y))N mod Lie (GY
C )

where π̂t and π̂+ denote projection with respect to Fo ∈ MR. Therefore,
by equation (6.17),

(6.19) Ad (h−1(y))
d

dy
Y(eiyN .F∞,W ) = [−L Ad (h−1(y))N, Y ].

Accordingly, upon comparing equation (6.19) with equation (6.13), it
then follows that

[−L Ad (h−1(y))N, Y ] =

[
h−1(y)

d

dy
h(y), Y

]

and hence −L Ad (h−1(y))N = h−1(y) d
dyh(y) mod gY

C as required.

q.e.d.

Example 6.20. Let θ(z) = ezN .F̂ be a split orbit. Then, the function

h(y) = eiyNe−iyN0y−H/2

[cf. Theorem (3.16) for notation] is a solution of equation (6.12) with

respect to the base point Fo = eiN0 .F̂ ∈ MR.
To prove this, equip sl2(C) with the standard Hodge structure (3.11)

and gC with the usual mixed Hodge structure induced by (Fo, W ). Then,
as a consequence of Theorem (3.13) and the fact [Theorem (3.16), part

(c)] that ezN0 .F̂ is and SL2-orbit with data (Fo, ψ∗ = ρ), the represen-
tation

(6.21) ρ : sl2(C) → gC

defined in Theorem (3.16) is a morphism of Hodge structure.
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By direct calculation:

h−1 dh

dy
= −H

2y
+ iAd

(
yH/2

)
Ad

(
eiyN0

)

∑

k≥2

N−k


(6.22)

Ad
(
h−1(y)

)
N =

N0

y
+ Ad

(
yH/2

)
Ad

(
eiyN0

)

∑

k≥2

N−k


 .

Similarly, a small computation in sl2(C) shows that the basis (1.6) sat-
isfies the Hodge conditions:

(6.23) x− ∈ sl2(C)−1,1, z ∈ sl2(C)0,0, x+ ∈ sl2(C)1,−1.

Therefore, since ρ is a morphism of Hodge structures, the image (X+,
Z, X−) of the basis (1.6) under ρ satisfy the analogous conditions

(6.24) X− ∈ g−1,1, Z ∈ g0,0, X+ ∈ g1,−1

at (Fo, W ). Comparing (1.6) and (3.15), it then follows that

N0 =
1

2i
(X+ − X− + Z), N+

0 =
1

2i
(X+ − X− − Z)(6.25)

H = (X+ + X−).

Consequently,

(6.26) L (N0) =
1

2i
L (X+ − X− + Z) =

1

2i
(iX+ + iX−) =

1

2
H.

To continue, we now recall that by [14], [25]

(6.27) (adN0)
jN−k ∈ Λ−1,−1

(Fo,W )

and hence the function Ad (yH/2)Ad(eiyN0)(
∑

k≥2 N−k) takes values in

Λ−1,−1
(Fo,W ). Therefore, by equations (6.22) and (6.26):

− LAd (H−1(y))N

= −L (N0)

y
− L Ad (yH/2)Ad(eiyN0)


∑

k≥2

N−k




= −H

2y
+ iAd (yH/2)Ad(eiyN0)


∑

k≥2

N−k


 = h−1 dh

dy
.

To relate equation (6.12) with Nahm’s equation, we now decompose

(6.28) β(y) = Ad (h−1(y))N

according to its Hodge components with respect to (Fo, W ). To this
end, observe that as a consequence of equation (6.18), the Hodge de-
composition of β(y) with respect to (Fo, W ) has the same form as the
Hodge decomposition of N with respect to (ezN .F∞, W ). Therefore,
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by the next lemma, the Hodge decomposition of β(y) with respect to
(Fo, W ) is of the form

(6.29) β(y) = β1,−1(y) + β0,0(y) + β−1,1(y) + β+(y) + β−(y)

where

(6.30) β+(y) =
∑

k>0

β0,−k(y), β−(y) =
∑

k>0

β−1,1−k(y).

Lemma 6.31. Let ezN .F be a nilpotent orbit. Then, with respect to

(ezN .F, W ), the Hodge decomposition of N assumes the form:

(6.32) N = N−1,1 + N0,0 + N1,−1 +

(
∑

k>0

N−1,1−k

)
+

(
∑

k>0

N0,−k

)
.

Proof. The fact the N is horizontal at ezN .F implies that

(6.33) N = N−1,1 +
∑

k>0

N−1,1−k mod
⊕

r≥0

gr,s.

Define

N−k =
⊕

r+s=−k

N r,s.

Then, the horizontality (6.33) of N coupled with the fact that N = N̄
implies that

(6.34) N0 = N−1,1 + N0,0 + N1,−1.

Suppose that (6.32) is false and let k be the smallest integer such that
N−k violates (6.32). By (6.34), k > 0. As such, by equation (6.33)

N−k = N−1,1−k + N0,−k + Np,−p−k + · · ·
for some integer p > 0. By, Theorem (2.4):

(6.35) gr,s = gs,r mod
⊕

a<s,b<r

ga,b.

Accordingly, Np,−k−p is of Hodge type (−k − p, p) modulo lower order
terms. Consequently, since N = N̄ and elements of type (−k− p, p) are

not horizontal, Np,−k−p must be annihilated by part of the fallout of
the complex conjugate of some Hodge component N r,s with r+s > −k.
On the other hand, by the definition of k, all such components N r,s

satisfy (6.32). Therefore, by equation (6.35), there is no way for N r,s to

annihilate Np,−k−p since p > 0. q.e.d.

Following [34] and [7], define

(6.36) α(y) = −2h−1(y)
dh

dy
.
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Then, by virtue of equation (6.12),

α(y) = α1,−1(y) + α−1,1(y) + α+(y) + α−(y)

where

(6.37)
α1,−1 = 2iβ1,−1,

α−1,1 = −2iβ−1,1

α+ = 2iβ+

α− = −2iβ−.

On the other hand, differentiation of equation (6.28) shows that

(6.38) −2
dβ

dy
= [β(y), α(y)].

Inserting equation (6.37) into (6.38) and taking Hodge components, we
then obtain the following result:

Theorem 6.39. Let h(y) be a solution to equation (6.12). Then,

(6.40)
d

dy
β0(y) = −[β0(y), L β0(y)], β0(y) =

∑

r+s=0

βr,s(y)

and

(6.41)
d

dy

(
β−

β+

)
= i

(
ad β0,0 −2 adβ−1,1

2 ad β1,−1 −adβ0,0

) (
β−

β+

)
+2i

(
[β+, β−]

0

)
.

In particular, as a consequence of equation (6.40), we obtain the
following relationship between nilpotent orbits and solutions to Nahm’s
equation:

Corollary 6.42. Let h(y) be a solution of equation (6.12), and

(6.43)
X−(y) = −2iβ−1,1(y), Z(y) = 2iβ0,0(y), X+(y) = 2iβ1,−1(y).

The function Φ : (a,∞) → Hom(sl2(C), gC) defined by setting

(6.44) Φ(y)x+ = X+(y), Φ(y)z = Z(y), Φ(y)x− = X−(y)

is a solution (6.4) of Nahm’s equation.

Proof. The assertion that Φ is a solution to Nahm’s equation is equiv-
alent to the system of equations:

−2
dX+

dy
= [Z(y), X+(y)], 2

dX−

dy
= [Z(y), X−(y)](6.45)

−dZ

dy
= [X+(y), X−(y)].

To verify that the triple (6.43) satisfies equation (6.45), one simply
expands out equation (6.40) in terms of the Hodge components of β0.

q.e.d.
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The remaining Hodge components of α and β determine the extension
data θ(z). To relate these components to solution of Nahm’s equation
(6.44), let

(6.46) A =

(
1
2ad Z(y) −adX−(y)

−adX+(y) −1
2ad Z(y)

)

and define

(6.47) τ−k =
∑

r>0,s>0,r+s=k

[α0,r, α−1,1−s].

Then, equation (6.41) is equivalent to the hierarchy of differential equa-
tions:

(6.48)
d

dy

(
α−1,1−k

α0,−k

)
= A

(
α−1,1−k

α0,−k

)
+

(
τ−k

0

)
, k = 1, 2, . . . .

Accordingly, equation (6.48) can be viewed as a system of equations
relating the evolution of the extension data of θ(z) to the nilpotent
orbits of pure Hodge structure induced by θ(z) on GrW .

7. Nilpotent Orbits of Pure Hodge Structure

The relation between nilpotent orbits and solutions of the generalized
Nahm’s equation presented in Theorem (6.11) can be inverted as follows:

Theorem 7.1. Let Fo ∈ MR, and suppose that β(y) is an h-valued

function which satisfies the Lax equation

(7.2)
dβ

dy
= −[β(y), L β(y)].

Then, there exists an h-valued function h(y), an element Ñ ∈ h and a

point F̃ ∈ M̌ such that

(a) h−1(y)dh
dy = −Lβ(y), β(y) = Ad (h−1(y))Ñ ;

(b) h(y).Fo = eiyÑ .F̃ .

Proof. The differential equation

(7.3) h−1(y)
dh

dy
= −Lβ(y)

completely determines h(y) up to a choice of initial value ho ∈ H. Like-
wise, by virtue of equations (7.2) and (7.3),

Ad (h−1(y))
d

dy
Ad (h(y))β(y) = 0.
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Therefore, β(y) = Ad (h−1(y))Ñ for some fixed element Ñ ∈ h. Simi-
larly, by virtue of equation (7.3),

h−1(y)eiyÑ d

dy
e−iyÑh(y) = h−1(y)eiyÑ

(
−iÑe−iyÑh(y) + eiyÑ dh

dy

)

= −iAd (h−1(y))Ñ + h−1 dh

dy

= −iβ(y) − L β(y) ∈ gFo
C .

Accordingly,

e−iyÑh(y) = gCf(y)

for some GFo
C -valued function f(y) and some fixed element gC ∈ GC.

Thus,

h(y).Fo = eiyÑgCf(y).Fo = eiyÑ .F̃

where F̃ = gC.Fo. q.e.d.

Remark. In order for ezÑ .F̃ to be a proper nilpotent orbit in the
sense of Definition (3.8), Ñ must be real and β(y) must be horizon-
tal with respect to Fo. In this case, we can then introduce a spec-
tral parameter into equation (7.2) by simply replacing β(y) by βλ(y) =∑

p,q λpβp,q(y).

In §6 of [7], Cattani, Kaplan and Schmid proved the SL2-orbit the-
orem for nilpotent orbits of pure Hodge structure θ(z) = ezN .F by
constructing a series solution

β(y) =
∑

n≥0

βny−1−n/2

of equation (7.2) such that (Ñ , F̃ ) = (N, F ). In this section, we summa-
rize this approach in some detail in preparation for the proof Theorem
(4.2) presented in §8–9.

To this end, let a be a complex Lie algebra and U be a representation
of sl2(C). Then, contraction against the Casimir element

(7.4) Ω = 2x+x− + 2x−x+ + z2

of sl2(C) defines a pairing

(7.5) Q : Hom(sl2(C), a) ⊗ Hom(U, a) → Hom(U, a)

via the rule
(7.6)
Q(A, B)(u) = 2[A(x+), B(x−.u)] + 2[A(x−), B(x+.u)] + [A(z), B(z.u)].
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Furthermore, a short calculation shows that, relative to the adjoint rep-
resentation U of sl2(C), Nahm’s equation (6.2) is equivalent to the dif-
ferential equation

(7.7) −8
dΦ

dy
= Q(Φ, Φ).

Following [7], suppose that Φ has a convergent series expansion about
infinity of the form

Φ =
∑

n≥0

Φny−1−n/2

and let Q = 8Qo. Then, equation (7.7) is equivalent to the recursion
relations

(7.8) Φ0 = Qo(Φ0, Φ0)

and

(7.9) (1 + n/2)Φn − 2Qo(Φ0, Φn) =
∑

0<k<n

Qo(Φk, Φn−k), n > 0.

Equation (7.8) implies that Φ0 is either zero or an embedding of sl2(C)
in gC. If Φ0 = 0 then Φn = 0 for all n by induction. If Φ0 6= 0 then a
short calculation [7, 6.14] shows that

Qo(Φ0, T ) =
1

16
(ℓ(Ω) − ΩT + 8T )

where ℓ(Ω)T and ΩT respectively denote the left and diagonal action of
the Casimir element (7.4) on T ∈ Hom(sl2(C), gC) ∼= gC ⊗ sl2(C)∗.

To continue, we now recall [7, 6.18] that relative to the sl2 module
structure induced on gC by Φ0, we can decompose

(7.10) Hom(sl2(C), gC) =
∑

r≥0

1∑

ǫ=−1

Hom(sl2(C), g(r))ǫ

where Hom(sl2(C), g(r))ǫ is the isotypical component of consisting of the
span of all irreducible submodules of gC ⊗ sl2(C)∗ which are of highest
weight r with respect to the left module structure and highest weight
r + 2ǫ with respect to the diagonal structure.

Relative to the bigrading (7.10), the recursion relation (7.9) reduces
to the equation [7, 6.20]

(7.11) (n + ǫ2 + ǫ(r + 1))Φr,ǫ
n = 2

∑

0<k<n

Qo(Φk, Ψn−k)
r,ǫ.

Therefore, subject to the compatibility condition

(7.12)
∑

0<k<n

Qo(Φk, Ψn−k)
n,−1 = 0

equation (7.11) completely determines every component Φr,ǫ
n except

Φn,−1
n in terms of Φ0, . . . ,Φn−1. The verification of the compatibility
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condition (7.12) in turn reduces a standard weight argument (cf. [7,
6.21]). Thus, given a collection of elements

(7.13) Tn ∈ Hom(sl2(C), g(n))−1

there exists a unique series solution Φ of equation (7.7) such that

(a) Φn ∈ ⊕r≤n, r≡n mod 2 Hom(sl2(C), g(r));

(b) Φn,−1
n = Tn;

(c) Φn,0
n = Φn,1

n = 0.

In particular, Φ1 = 0 since it must have highest weight −1 with respect
to the diagonal action of sl2(C).

Imposing the condition that Φ should be horizontal and map sl2(R)
into h = gR, it then follows that each Tn must also be a morphism of
Hodge structure with respect to the standard Hodge structure on sl2(C)
defined in §3 and pure Hodge structure

gC =
⊕

p

gp,−p

induced by Fo on gC. Accordingly, since gC is the Lie algebra of a linear
Lie group GC, the equation

(7.14) h−1(y)
d

dy
= −1

2
Φ(h)

therefore determines h(y) up to left multiplication by ho ∈ H = GR.
Define

(7.15) h(y) = g(y)y−H/2

where H = Φ0(h). Then, a standard weight argument shows that

(7.16) g−1(y)
dg

dy
= −1

2
y−H/2(Φ(h) − Φ0(h)y−1) =

∑

m≥2

Bmy−2.

Consequently, g(y) and g−1(y) have convergent series expansions about
∞ of the form

g(y) = g(∞)(1 + g1y
−1 + g2y

−2 + · · · )(7.17)

g−1(y) = (1 + f1y
−1 + f2y

−2 + · · · )g−1(∞)

where the coefficients gk and fk are universal non-commutative polyno-
mials in the Bk with rational coefficients.

To connect these results with the SL2-orbit theorem, we now assume
that θ(z) = ezN .F is a nilpotent orbit of pure Hodge structure and let

(7.18) (F, rW ) = (e−iδ.F̂ , rW )

be the splitting of the limiting mixed Hodge structure of θ(z) defined
by Theorem (2.16). Define

Fo = θ̂(i) = eiN .F̂
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where θ̂(z) = ezN .F̂ is the associated split orbit, and require Φ0 to
be the associated representation of sl2(R) defined by Theorem (3.13).
Then,

h(y).Fo = g(y)y−H/2.Fo = g(y)eiyN .F̂ .

On the other hand, by Theorem (7.1), h(y).Fo = eiyÑ .F̃ and hence

eiyÑ .F̃ = g(y)eiyN .F̂ .

Therefore, in order to complete the proof of the SL2 orbit theorem, it
remains only to show that one can select data (g(∞), {Tn}) such that

(Ñ , F̃ ) = (N, F ). Assuming that g(∞) ∈ ker(N), this then boils down
after a lengthy calculation to the requirement that

eiδ = g(∞)

(
1 +

∑

k>0

1

k!
(−i)k(ad N0)

k gk

)
.

At this point, the algebra/combinatorics of solving for g(∞) and {Tn}
becomes sufficiently involved that I shall leave the details to §8 and [7].

8. Nilpotent Orbits of Type (I)

In this section we prove Theorem (4.2) for admissible nilpotent orbits
of type (I) by constructing a suitable series solution β(y) of the Lax
equation (7.2) using the outline of [7] developed in §7. To determine
what form the series expansion of β(y) should assume, consider the
following two examples:

Example 8.1. Let π : E → C denote the family of elliptic curves
defined by the equation

v2 = u(u − 1)(u − s)

and π̃ : Ẽ → C denote the corresponding family of punctured curves
obtained by deleting the points of E lying over u = a for some fixed
parameter a ∈ C − {0, 1}. Then, the function

β(y) = Ad (h−1(y))N

attached by Theorem (6.11) to the nilpotent orbit of R1
π̃∗(Q)⊗OC−{0,1,a}

at s = 0 is given by the formula

β(y) =
N

y
− δ

y3/2
.

Example 8.2. Let θ̂(z) = ezN .F̂ be a split orbit of type (I) and
U = H(1) ⊗ S(1) [cf. Theorem (3.14)]. Equip gC with the associated
sl2-module structure defined by Theorem (3.16) and suppose that

Ψ : U → gC
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is a morphism of Hodge structure with respect to Fo = θ̂(i) such that

ς.Ψ(τ) = Ψ(ς.τ)

for all ς ∈ sl2(C) and τ ∈ U. Then,

θ(z) = ezNe−iΨ(f).F̂

is an admissible nilpotent orbit of type (I) with split orbit θ̂(z) and
associated functions

β(y) =
N

y
+

Ψ(f)

y3/2
, h(y) = (1 + Ψ(e)y−1)y−H/2.

Based upon such examples, let us assume that the desired function
β(y) is horizontal with respect to Fo and has a convergent series expan-
sion about ∞ of the form

(8.3) β(y) =
∑

n≥0

βny−1−n/2.

Let Φ(y) be the corresponding function defined by equations (6.43)–
(6.44) and Ψ(y) be the linear map from U = H(1) ⊗ S(1) to gC defined
by the equation

(8.4) Ψ(e + if) = 2iβ0,−1(y), Ψ(e − if) = −2iβ−1,0.

Then, a short calculation shows that equation (7.2) is equivalent to the
pair of differential equations

(8.5) −8Φ′(y) = Q(Φ, Φ), −2Ψ′(y) = Q(Φ, Ψ).

Thus, as in [7], the series expansion

Φ(y) =
∑

n≥0

Φny−1−n/2

of Φ can be computed inductively starting from a collection of mor-
phisms of Hodge structure

(8.6) Tn : sl2(C) → g(n)

such that ΩTn = (n2 − 2n)Tn, where

(8.7) gC =
⊕

r

g(r)

denotes the decomposition of gC into isotypical components with respect
to the sl2-module structure

x.y = [Φ0(x), y]

induced by Φ0 on gC. Moreover, Φ1 = 0.

Similarly, the coefficients of the series expansion

(8.8) Ψ =
∑

n≥0

Ψny−1−n/2
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satisfy the recursion relation

(8.9) (n + 2)Ψn =
n∑

j=0

Q(Φj , Ψn−j).

Therefore, except for the contribution introduced by the term Q(Φ0,Ψn),
equation (8.9) allows us to inductively compute the coefficients of Ψ.

Let R be the endomorphism of Hom(U, gC) defined by Q(Φ0, ∗) and
recall that if Ur and Us are irreducible sl2-modules of highest weight r
and s then

(8.10) Ur ⊗ Us =
⊕

|r−s|<t<r+s, t≡r+s mod 2

Ut

where Ut is irreducible of highest weight t. In particular,

(8.11) Hom(U, g(n)) = Hom(U, g(n))+ ⊕ Hom(U, g(n))−

where Hom(U, gC(n))± is of highest weight n with respect to the left
action of sl2 on Hom(U, gC) ∼= gC ⊗ (U)∗ and highest weight n ± 1 with
respect to the diagonal action.

Calculation 8.12. R acts semisimply on Hom(U, g(n)) as multi-
plication by (n + 2) on Hom(U, g(n))− and multiplication by −n on
Hom(U, g(n))+.

Proof. Let e = (1, 0) and f = (0, 1) denote the standard basis of
C2 and M be an irreducible submodule of gC of highest weight n. Let
{e∗, f∗} be the corresponding dual basis of (C2)∗. Then, relative to the
standard identification of M with Symn(C2),

(8.13) M ⊗ U∗ ∼= A ⊕ B

where

A = span(a0, . . . , an+1), aj = (n − j + 1)en−jf j ⊗ f∗

− jen−j+1f j−1 ⊗ e∗

B = span(b0, . . . , bn−1), bj = en−j−1f j+1 ⊗ f∗ + en−jf j ⊗ e∗

are irreducible submodules of highest weight n+1 and n−1 with respect
to the diagonal action of sl2(C), and [cf. (3.15)]

(8.14) h.(aj) = (n + 1 − 2j)aj , h.(bj) = (n − 1 − 2j)bj .

Accordingly, it suffices to compute R(aj) and R(bj). A short calculation
shows that

Q(σ, τ)(v) = 2[σ(n+
0 ), τ(n0.v)] + 2[σ(n−

0 ), τ(n+
0 .v)] + [σ(h), τ(h.v)].
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Therefore,

R(aj)(e) = 2n
+
0 .aj(f) + h.aj(e)

= 2n
+
0 .((n − j + 1)en−jf j) + h.(−jen−j+1f j−1)

= 2(n − j + 1)jen−j+1f j−1 − j(n − 2j + 2)en−j+1f j−1

= j(2n − 2j + 2 − n + 2j − 2)en−j+1f j−1

= jnen−j+1f j−1 = −naj(e).

The remaining calculations of R(aj)(f), R(bj)(e) and R(bj)(f) are sim-
ilar. q.e.d.

Corollary 8.15. Ψ0 = 0, Ψ1 ∈ Hom(U, g(1))−, Ψ2 ∈ Hom(U, g(2))−.

Proof.

By equation (8.9), R(Ψ0) = 2Ψ0, and hence Ψ0 ∈ Hom(U, g(0))−

by Calculation (8.12). However, Hom(U, g(0))− = 0 since it is highest
weight −1 with respect to the diagonal action of sl2. Consequently, by
virtue of the fact that Ψ0 = 0 and Φ1 = 0, it then follows from equation
(8.9) that R(Ψ1) = 3Ψ1 and R(Ψ2) = 4Ψ2. Therefore, by Calculation
(8.12), Ψ1 ∈ Hom(U, g(1))− and Ψ2 ∈ Hom(U, g(2))−. q.e.d.

To continue, given a semisimple endomorphism of A of a finite di-
mensional vector space V , let [∗]Aλ denote projection from V onto the λ
eigenspace of V . Then, by virtue of Calculation (8.12),

(n − k)Ψ−
n,k =


 ∑

0<j<n

Q(Φj , Ψn−j)




R

k+2

(8.16)

(n + k + 2)Ψ+
n,k =


 ∑

0<j<n

Q(Φj , Ψn−j)




R

−k

where Ψ±
n,k denotes the component of Ψn which takes values in Hom(U,

g(k))±. Therefore, subject to the compatibility condition

(8.17)


 ∑

0<j<n

Q(Φj , Ψn−j)




R

n+2

= 0

equation (8.9) allows one to compute Ψn modulo Ψ−
n,n from Φ and

Ψ1, . . . ,Ψn−1.
To handle the compatibility condition (8.17), observe that by virtue

of equation (8.10),

Hom(sl2(C), g(n)) =
1⊕

ǫ=−1

Hom(sl2(C), g(n))ǫ
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where Hom(sl2(C), g(n))ǫ is highest weight n with respect to the left
action of sl2(C) on gC and highest weight n + 2ǫ with respect to the
diagonal action.

Lemma 8.18. Let C ∈ Hom(sl2(C), g(r))−1 and B ∈ Hom(U, g(s))−.

Then,

Q(C, B) ∈
⊕

|r−s|≤t≤r+s−2, t≡r+s mod 2

Hom(U, g(t)).

Proof. By equation (8.10) and the Jacobi identity,

[g(r), g(s)] ⊆
⊕

|r−s|≤t≤r+s, t=r+s mod 2

g(t).

Therefore, it suffices to show that Q(C, B) projects trivially onto
Hom(U, g(r + s)). Direct calculation shows that every irreducible sub-
module of Hom(sl2(C), g(r))−1 is isomorphic to span(c0, . . . , cr−2) where

ck(n0) = er−k−2fk+2, ck(h) = 2er−k−1fk+1, ck(n
+
0 ) = −er−kfk.

Accordingly, by the semisimplicity of sl2(C), it is sufficient to show that

Q(ck, bj) = 0 mod
⊕

t≤r+s−2

Hom(U, g(t)).

Consider Q(ck, bj)(e):

Q(ck, bj)(e) = 2[ck(n
+
0 ), bj(f)] + [ck(h), bj(e)](8.19)

= −2[er−kfk, es−j−1f j+1] + 2[er−k−1fk+1, es−jf j ]

∈ Er+s−2k−2j−2(h).

Suppose that Q(ck, bj)(e) projects non-trivially onto g(r + s). Then, by

(8.19), n
r+s−j−k−1
0 .Q(ck, bj)(e) 6= 0. But,

n
r+s−j−k−1
0 .[er−kfk, es−j−1f j+1]

=

(
r + s − j − k − 1

r − k

)
[nr−k

0 .er−kfk, ns−j−1
0 .es−j−1f j+1]

=

(
r + s − j − k − 1

r − k

)
[(r − k)!f r, (s − j − 1)!fs]

= (r + s − j − k − 1)![f r, fs].

Likewise, n
r+s−j−k−1
0 .[er−k−1fk+1, es−jf j ] = (r + s− j − k− 1)![f r, fs].

Combining these two equations with (8.19), it then follows that
Q(ck, bj)(e) projects trivially onto g(r + s). Similarly, one finds that
Q(ck, bj)(f) projects trivially onto g(r + s), thereby proving the lemma.

q.e.d.
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Theorem 8.20. For any choice of a collection of morphisms of Hodge

structure

Sn ∈ Hom(U, g(n))−, n > 0

there exists a unique, convergent h-valued series solution Ψ =∑
n>0 Ψny−1−n/2 of equation (8.5) which is horizontal with respect to

Fo such that

(a) Ψn ∈ ⊕r≤n, r≡n mod 2 Hom(U, g(r));
(b) Ψ−

n,n = Sn;

(c) Ψ+
n,n = 0.

Proof. The desired function Ψ can now be constructed inductively
using equation (8.16). Namely, by Corollary (8.15), we can assume by
induction that Ψm satisfies conditions (a)–(c) for m < n. Therefore, by
Lemma (8.18),

(8.21)
∑

0<j<n

Q(Φj , Ψn−j) ∈
⊕

t<n, t≡n mod 2

Hom(U, g(t))

since
Φk ∈

⊕

s≤k, s≡k mod 2

Hom(sl2, g(s))

by [7, 6.17]. Consequently,
∑

0<j<n Q(Φj , Ψn−j) satisfies the compati-

bility condition (8.17), and hence we can solve for Ψn modulo Ψ−
n,n using

equation (8.16). In particular, by equation (8.21) and (8.16), Ψ+
n,n = 0.

Likewise, Ψn,k = 0 for n > k. Thus, given Φ and Ψ1, . . . ,Ψn−1 there
exists a unique solution Ψn to equations (8.9) which satisfies conditions
(a)–(c).

Imposing the condition that Sn = Ψ−
n,n be a morphism of Hodge

structure, it then follows from [7, 6.47] and equation (8.16) that Ψn is
horizontal and takes values in h.

To prove that the formal series solution

Ψ(y) =
∑

n≥0

Ψny−1−n/2

constructed above converges about y = ∞, recall that gC is a subalgebra
of gl(VC) and let ‖ ∗ ‖ be norm on gl(VC) such that ‖AB‖ ≤ ‖A‖‖B‖.
Define

‖A‖1 = 4(‖A(x+)‖ + ‖A(x−)‖ + ‖A(z)‖)
‖B‖2 = ‖B(ν+)‖ + ‖B(ν−)‖

A ∈ Hom(sl2(C), gC)

B ∈ Hom(U, gC).

Then, a short calculation shows that

‖Q(A, B)‖2 ≤ ‖A‖1‖B‖2.

Therefore, by equation (8.9),

(n + 2)‖Ψn‖2 ≤ ‖Φ0‖1‖Ψn‖2 +
∑

0<j<n

‖Φj‖1‖Ψn−j‖2
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and hence

(8.22) (n − 1)‖Ψn‖2 ≤
∑

0<j<n

‖Φj‖1‖Ψn−j‖2

upon rescaling ‖ ∗ ‖ so that ‖Φ0‖1 = 3.
To continue, we note that since gC is finite dimensional, there exists

an integer m such that g(n) = 0 for n > m. Consequently, Sn = 0 for
n > m and hence

max
k

‖Sk‖2

is finite. Therefore, there exists a constant D such that3

(8.23) ‖Ψℓ‖2 ≤ Dℓ(max
k

‖Sk‖2)
ℓ

for ℓ ≤ m. Similarly, by [7, 6.24] there exists a constant C such that

‖Φℓ‖1 ≤ Cℓ(max
k

‖Tk‖1)
ℓ.

Assume by induction that (8.23) holds for ℓ < n, and enlarge D if
necessary so that

D(max
k

‖Sk‖2) ≥ C(max
k

‖Tk‖1).

Then, by equation (8.22),

(n − 1)‖Ψn‖2 ≤
∑

0<j<n

‖Φj‖1‖Ψn−j‖2

≤
∑

0<j<n

Cj(max
k

‖Tk‖1)
jDn−j(max

k
‖Sk‖2)

n−j

≤
∑

0<j<n

Dn(max
k

‖Sk‖2)
n = (n − 1)Dn(max

k
‖Sk‖2)

n.

Therefore,

‖Ψn‖2 ≤ Dn(max
k

‖Sk‖2)
n

for all n, and hence the series
∑

n≥0 Ψny−1−n/2 converges on some in-

terval (a,∞). q.e.d.

Invoking Theorem (7.1), we now obtain an H-valued function h(y)
such that

(8.24) h−1 dh

dy
= −Lβ(y) = −1

2
Φ(h) − Ψ(e).

Following [7], let H = Φ0(h) and g(y) be the H-valued function defined
by the equation

(8.25) h(y) = g(y)y−H/2.

3In the degenerate case maxk ‖Sk‖2 = 0 all Sk = 0 and hence Ψ = 0 by Theorem
(8.20).
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Then,
[
g−1 dg

dy

]ad Y

0

= −1

2
y−H/2.(Φ(h) − Φ0(h)y−1)(8.26)

[
g−1 dg

dy

]ad Y

−1

= −y−H/2.Ψ(e)

where Y = Y(Fo,W ).

Theorem 8.27. g−1(dg/dy) =
∑

m≥2 Bmy−m.

Proof. Due to the short length of W ,

g−1 dg

dy
=

[
g−1 dg

dy

]ad Y

0

+

[
g−1 dg

dy

]ad Y

−1

.

Therefore, since Φ is isomorphic via the grading Y with the correspond-
ing function defined by nilpotent orbits of pure Hodge structure induced
by θ(z) on GrW , it then follows from [7, 6.30] that

[
g−1 dg

dy

]ad Y

0

=
∑

m≥2

[Bm]ad Y
0 y−m

where

[Bm]ad Y
0 = −1

2

∑

n≥m

[Φn(h)]ad H
2(m−1)−n.

To establish that [g−1 dg
dy ]Y−1 is also of this form, observe that by (8.26):

[
g−1 dg

dy

]Y

−1

= −y−H/2.Ψ(e) = −y−H/2.

(
∑

n>0

Ψn(e) y−1−n/2

)
(8.28)

= −y−H/2.

(
∑

n>0

n∑

r=0

[Ψn(e)]Hn−2ry
−1−n/2

)

= −
∑

n>0

n∑

r=0

[Ψn(e)]Hn−2r y−1−n+r.

However, by the description of the irreducible submodules B of
Hom(U, g(n))− presented in Calculation (8.12), [Ψn(e)]H−n = 0 and hence
equation (8.28) reduces to

[
g−1 dg

dy

]Y

−1

= −
∑

n>0

n−1∑

r=0

[Ψn(e)]Hn−2r y−1−n+r =
∑

m≥2

[Bm]ad Y
−1 y−m

where

(8.29) [Bm]ad Y
−1 = −

∑

n≥m−1

[Ψn(e)]ad H
2(m−1)−n.

q.e.d.
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Corollary 8.30. The functions g(y) and g−1(y) have convergent

Taylor expansions about y = ∞ of the form

g(y) = g(∞)(1 + g1y
−1 + g2y

−2 + · · · ),
g−1(y) = (1 + f1y

−1 + f2y
−2 + · · · )g−1(∞)

where g(∞) is an arbitrary element of H determined by the initial value

of h(y). Moreover, the coefficients gn and fn can be expressed as uni-

versal non-commutative polynomials in the Bk with rational coefficients,

weighted homogeneous of degree n when Bk when Bk is assigned weight

k − 1. Bn+1 occurs with coefficient −1/n in gn and with coefficient 1/n
in the case of fn.

Proof. See Lemma (6.32) in [7]. q.e.d.

Calculation 8.31. n
k
0.Bk = 0.

Proof. That n
k
0.[Bk]

Y
0 = 0 is shown in [7, 6.32]. Moreover, by (8.29):

[Bk]
Y
−1 = −

∑

n≥k−1

[Ψn(e)]H2(k−1)−n

and hence

n
k
0.[Bk]

Y
−1 = −

∑

n≥k−1

n
k
0.[Ψn(e)]H2(k−1)−n = 0

since Ψn(e) takes values in ⊕r≤n g(r). q.e.d.

Corollary 8.32. n
k+1
0 .gk = n

k+1
0 .fk = 0.

Proof. By Corollary (8.30), gk and fk are homogeneous polynomials
of degree k in B2, . . . , Bk+1 with respect to the grading deg(Bℓ) = ℓ−1.

Therefore, by virtue of Calculation (8.31) and Leibniz rule, both n
k+1
0 .gk

and n
k+1
0 .fk = 0. q.e.d.

Theorem 8.33. Let β(y) = Φ(n0) + Ψ(f) denote the solution equa-

tion (7.2) constructed above, and ezÑ .F̃ be the associated nilpotent orbit

defined by Theorem (7.1). Then, Ñ coincides with N0 = Φ0(n0) if and

only if g(∞) ∈ ker(adN0).

Proof. By definition,

Ñ = h(y).β(y) = h(y).([β(y)]Y0 + [β(y)]Y−1) = h(y).[β(y)]Y0 + h(y).ψ(f).

Moreover, since Ψ0 = 0,

y−H/2.Ψ(f)

= y−H/2.

(
∑

n>0

n∑

r=0

[Ψn(f)]Hn−2r y−1−n/2

)

=
∑

n>0

n∑

r=0

[Ψn(f)]Hn−2r y−1−n+r = {· · · }y−1 + {· · · }y−2 + · · · .
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Thus, making use of the calculations of [7], we have

Ñ = h(y).[β(y)]Y0 + {· · · }y−1 + {· · · }y−2 + · · ·
= g(y)y−H/2.[β(y)]Y0 + {· · · }y−1 + {· · · }y−2 + · · ·
= g(y).(N0 + {· · · }y−1 + {· · · }y−2 + · · · )

+ {· · · }y−1 + {· · · }y−2 + · · ·
= g(∞).N0 + {· · · }y−1 + {· · · }y−2 + · · ·

and hence Ñ = g(∞).N0. q.e.d.

To connect previous constructions with Theorem (4.2), let us now
suppose that θ(z) = ezN .F is an admissible nilpotent orbit of type (I),
and let

θ̂(z) = ezN .F̂

be the associated split orbit obtained by applying the splitting operation

(F̂ , rW ) = (e−iδ.F, rW )

to the limiting mixed Hodge structure of θ. Define

(8.34) Fo = θ̂(
√
−1) = eiN .F̂

and let (N0, H, N+
0 ) be the associated sl2-triple obtained by application

of Theorem (3.16) to θ̂. Set

(8.35) Φ0(n0) = N0, Φ(h) = H, Φ0(n
+
0 ) = N+

0

and recall that N0 = N due to the short length of W .

Theorem 8.36. Let β(y) = Φ(n0) + Ψ(f) denote the solution equa-

tion to (7.2) constructed above, and ezÑ .F̃ be the associated nilpotent

orbit obtained from Theorem (7.1). Assume that Fo and Φ0 are given

by equations (8.34)–(8.35) and g(∞) ∈ ker(adN0). Then,

F̃ = g(∞)

(
1 +

∑

k>0

1

k!
(−i)k(ad N0)

k gk

)
.F̂ .
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Proof. By Theorem (7.1), h(y).F0 = eiyN0 .F̃ . Therefore,

F̃ = e−iyN0h(y).Fo = e−iyN0g(∞)

(
1 +

∑

k>0

gky
−k

)
y−H/2eiN0 .F̂

= e−iyN0g(∞)

(
1 +

∑

k>0

gky
−k

)
eiyN0 .F̂

= g(∞)e−iyN0

(
1 +

∑

k>0

gky
−k

)
eiyN0 .F̂

= g(∞)

(
e−iy ad N0

(
1 +

∑

k>0

gky
−k

))
.F̂

= g(∞)


1 +

∑

k>0,j≥0

(−i)j

j!
(adN0)

jgky
j−k


 .F̂ .

Moreover, by Corollary (8.32), (ad N0)
j gk = 0 whenever j > k. Thus,

F̃ = g(∞)


1 +

∑

k>0

k∑

j=0

(−i)j

j!
(adN0)

jgky
j−k


 .F̂∞

= g(∞)

(
1 +

∑

k>0

1

k!
(−i)k(ad N0)

k gk

)
.F̂∞

+ {· · · }y−1 + {· · · }y−2 + · · · .

Accordingly, upon taking the limit as y → ∞ in this last equation we
obtain the stated formula for F̃ . q.e.d.

Thus, in order to complete the proof of Theorem (4.2) for admissible
nilpotent orbits of type (I), it is sufficient to show that we can select
morphisms of Hodge structure

Tn ∈ Hom(sl2(C), g(n))−1, Sn ∈ Hom(U, g(n))−

for n > 0 and element ζ = log(g(∞)) ∈ h ∩ ker(adN0) ∩ Λ−1,−1

(F̂ ,rW )
such

that

eiδ = eζ

(
1 +

∑

k>0

1

k!
(−i)k(adN0)

k gk

)
.

Theorem 8.37. Let θ(z) = ezN .F be an admissible nilpotent orbit

of type (I). Then, the solutions β(y) of equation (7.2) which have the

following three properties

(1) β(y) is horizontal at Fo = θ̂(i);

(2) β(y) =
∑

n≥0 βny−1−n/2;

(3) β0 = N0;
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are in 1-1 correspondence with the elements η ∈ h∩ker(adN0)∩Λ−1,−1

(F̂ ,rW )

via the map

η =
∑

n>0

[βn]adH
−n .

Proof. If β (y) satisfies the conditions stated above then so does
[β(y)]adY

0 . Therefore, by Lemma (6.41) in [7] the map

[η]adY
0 =

[
∑

n>0

[βn]adH
−n

]adY

0

=
∑

n>0

[
[βn]adY

0

]adH

−n

determines a bijective correspondence between the morphisms Tn and
the elements of h ∩ ker(adY ) ∩ ker(adN0) ∩ Λ−1,−1

(F̂ ,rW )
.

To recover the morphisms Sn from [η]adY
−1 , observe that since (Fo, W )

is split over R,

H =
⊕

r+s=−1

g
r,s
(Fo,W )

is a pure Hodge structure of weight −1 with respect to which the repre-
sentation of sl2(C) defined by ad Φ0 is Hodge. Therefore, by Theorem
(3.14) we can decompose H into a direct sum of irreducible submodules
M , each of which is isomorphic to one of the following two standard
types

(a) H(d) ⊗ S(n), n = 2d − 1 odd;
(b) Ep,q ⊗ S(n), n + p + q = −1, p − q > 0;

where S(n) = Symn(C2) is the standard representation of sl2(C) of high-
est weight n equipped with the Hodge structured obtained by declaring

(8.38) νr = (e + if)r(e − if)n−r

to be of type (r, n− r), and H(d) = Cǫ−d,−d and E(p, q) = Cǫp,q ⊕Cǫq,p

are trivial representations of sl2 equipped with the Hodge structure
obtained by requiring ǫr,s to type (r, s) and ǫr,s = ǫs,r.

Let SM
n denote the projection of Sn onto such an irreducible module

M . Then, a short calculation shows that

(8.39) SM
n (e+ if) = τM ǫ−d,−d⊗νd, SM

n (e− if) = τM ǫ−d,−d⊗νd−1

for some real number τM if M is of type (a). Similarly, if M is type (b)
then

SM
n (e + if) = τM ǫp,q ⊗ ν−p + τ̄M ǫq,p ⊗ ν−q,(8.40)

SM
n (e − if) = τM ǫp,q ⊗ ν−p−1 + τ̄M ǫq,p ⊗ ν−q−1

where τM ∈ C, p, q < 0 and p + q + n = −1.
In particular, if SM

n is of type (8.40) then

2iSM
n (f) = τM ǫp,q ⊗ (ν−p − ν−p−1) + τ̄M ǫq,p ⊗ (ν−q − νq−1).
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Moreover, for any index 0 ≤ k ≤ n,

νk − νk−1 = (e + if)k(e − if)n−k − (e + if)k−1(e − if)n−k+1

= ik(−i)n−kfn − ik−1(−i)n−k+1fn + e(· · · )
= (2i)i2k−n−1fn + e(· · · ).

Accordingly, using the identity p + q + n = −1, it then follows that

(8.41) [βM
n ]ad H

−n = [SM
n (f)]ad H

−n = (−i)χτM ǫp,q ⊗ fn + iχτ̄M ǫq,p ⊗ fn

where χ = p − q. Similarly, if SM
n is of type (8.39) then

(8.42) [βM
n ]ad H

−n = τM ǫ−d,−d ⊗ fn.

Therefore, the sum

(8.43) [η]ad Y
−1 =

∑

M

ηM =
∑

n>0

∑

M

[βM
n ]ad H

−n

determines τM for all M .
To verify that the sum (8.43) takes values in Λ−1,−1

(F̂ ,rW )
, suppose that

SM
n is of type (8.40) and observe that

eiN0 .(ǫp,q ⊗ en) = ǫp,q ⊗ νn ∈ g
n+p,q
(Fo,W )

and hence

{eiN0 .(ǫp,q ⊗ en)}(F r
o ) = eiN0(ǫp,q ⊗ en)e−iN0eiN0 .F̂ r

= eiN0(ǫp,q ⊗ en).F̂ r ⊆ eiN0 .F̂n+p+r.

Therefore,

(8.44) (ǫp,q ⊗ en)(F̂ r) ⊆ F̂n+p+r.

Furthermore, by Theorem (3.16),

H = rY − Y

where rY is the grading of rW defined by the Ip,q’s of (F̂ , rW ) and Y
is the grading of W defined by the Ip,q’s of (Fo, W ). Consequently, the
condition that ǫp,q ⊗ en be of weight n with respect to H and weight −1
with respect to Y implies that

ǫp,q ⊗ en ∈
⊕

t

g
t,n−1−t

(F̂ ,rW )
.

Imposing the condition (8.44), it then follows that

(8.45) ǫp,q ⊗ en ∈
⊕

t≥n+p

g
t,n−1−t

(F̂ ,rW )
.

Likewise, switching the roles of p and q,

(8.46) ǫq,p ⊗ en ∈
⊕

s≥n+q

g
s,n−1−s

(F̂ ,rW )
.
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Thus, since ǫq,p ⊗ en = ǫp,q ⊗ en and (F̂ , rW ) is split over R, equations
(8.45) and (8.46) imply that the Hodge components

(ǫp,q ⊗ en)t,n−1−t

of ǫp,q ⊗ en with respect to (F̂ , rW ) vanish unless

(8.47) t = n − 1 − s, t ≥ n + p, s ≥ n + q.

Recalling that p+ q +n = −1, it then follows from equation (8.47) that

(ǫp,q ⊗ en)t,n−1−t = 0

unless t = n + p. Accordingly, since N0 is a (−1,−1)-morphism of

(F̂ , rW ),

(8.48) ǫp,q ⊗ fn = (N0)
n.(ǫp,q ⊗ en) ∈ g

p,q
(Fo,rW ).

Now, by equation (8.40), p, q < 0. Therefore, by equation (8.41) and
(8.48),

[SM
n ]adH

−n ∈ g
p,q

(F̂ ,rW )
⊕ g

q,p

(F̂ ,rW )
⊆ Λ−1,−1

(F̂ ,rW )
.

Similarly, if SM
n is of type (8.39) then

[SM
n ]adH

−n ∈ g
−d,−d

(F̂ ,rW )
⊆ Λ−1,−1

(F̂ ,rW )
.

q.e.d.

Following [7], we now note that by virtue of Corollary (8.30)

(8.49) 1 +
∑

k>0

1

k!
(−i)k(ad N0)

k gk = exp

(
∑

k>0

Qk(C2, . . . , Ck+1)

)

where Cℓ+1 = (−i)ℓ

ℓ! (ad N0)
ℓBℓ+1.

Calculation 8.51. Let (1 − x)r(1 + x)s =
∑

t bt
r,sx

t. Then,

[Cℓ+1]
adY
0 = i

∑

p,q≥1,p+q≥ℓ+1

bℓ−1
p−1,q−1([η]adY

0 )−p,−q

where ([η]adY
0 )−p,−q denotes the component of [η]adY

0 of type (−p,−q)

with respect to (F̂ , rW ).

Proof. See Lemma (6.60) in [7]. q.e.d.

Calculation 8.52.
[Cℓ+1]

adY
−1 = i

∑
p,q≥1,p+q≥ℓ+1 bℓ−1

p−1,q−1([η]adY
−1 )−p,−q.
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Proof. By equation (8.29),

[Cℓ+1]
ad Y
−1 = −(−i)ℓ

ℓ!
(ad N0)

ℓ
∑

n≥ℓ

[Ψn(e)]ad H
2ℓ−n(8.53)

= −(−i)ℓ

ℓ!

∑

n≥ℓ

(adN0)
ℓ[Sn(e)]ad H

2ℓ−n

= −(−i)ℓ

ℓ!

∑

n≥ℓ

∑

M

(adN0)
ℓ[SM

n (e)]ad H
2ℓ−n

where Sn =
∑

M SM
n denotes the decomposition of Sn into irreducible

components of type (8.39) and (8.40).
Now, for any index 0 ≤ k ≤ n,

νk = (e + if)k(e − if)n−k = (i(f − ie))k((−i)(f + ie))n−k(8.54)

= i2k−n(f − ie)k(f + ie)n−k = i2k−n
∑

t

itbt
k,n−ke

tfn−t.

Therefore, if SM
n is of type (8.40) then

[SM
n (e)]ad H

2ℓ−n

=
1

2
τM ǫp,q ⊗ [ν−p + ν−p−1]

ad H
2ℓ−n +

1

2
τ̄M ǫq,p ⊗ [ν−q + ν−q−1]

ad H
2ℓ−n

=
1

2
τM ǫp,q ⊗

(
i−2p−n+ℓbℓ

−p,n+p + i−2p−2+n+ℓbℓ
−p−1,n+p+1

)
eℓfn−ℓ

+
1

2
τ̄M ǫq,p ⊗

(
i−2q−n+ℓbℓ

−q,n+q + i−2q−2+n+ℓbℓ
−q−1,n+q+1

)
eℓfn−ℓ

=
1

2
i1+ℓ−χτM ǫp,q ⊗

(
bℓ
−p,−q−1 − bℓ

−p−1,−q

)
eℓfn−ℓ

+
1

2
i1+ℓ+χτ̄M ǫq,p ⊗

(
bℓ
−q,−p−1 − bℓ

−q−1,−p

)
eℓfn−ℓ

where χ = p− q [recall: p+q+n=-1]. To simplify the above expression,
observe that

∑

t

(bt
k,n−k − bt

k−1,n−k+1)x
t

= (1 − x)k(1 + x)n−k − (1 − x)k−1(1 + x)n−k+1

= (1 − x)k−1(1 + x)n−k((1 − x) − (1 + x))

= (−2x)(1 − x)k−1(1 + x)n−k

= (−2x)
∑

t

bt
k−1,n−kx

t
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and hence

bℓ
−p,−q−1 − bℓ

−p−1,−q = −2bℓ−1
−p−1,−q−1

bℓ
−q,−p−1 − bℓ

−q−1,−p = −2bℓ−1
−q−1,−p−1.

Accordingly,

[SM
n (e)]ad H

2ℓ−n = −bℓ−1
−p−1,−q−1(i

1+ℓ−χτM ǫp,q ⊗ eℓfn−ℓ)(8.55)

− bℓ−1
−q−1,−p−1(i

1+ℓ+χτ̄M ǫq,p ⊗ eℓfn−ℓ).

Inserting (8.55) into equation (8.53) it then follows by equation (8.48)
that

CM
ℓ+1 = ibℓ−1

−p−1,−q−1i
−χτM ǫp,q ⊗ fn + ibℓ−1

−p−1,−q−1i
χτ̄M ǫq,p ⊗ fn(8.56)

= ibℓ−1
−p−1,−q−1(η

M )p,q + ibℓ−1
−q−1,−p−1(η

M )q,p.

Similarly, if SM
n is of type (8.39) then

(8.57) CM
ℓ+1 = ibℓ−1

d−1,d−1(η
M )−d,−d.

Thus, combining equations (8.56) and (8.57) and switching the signs of
p and q, we obtain the formula:

[Cℓ+1]
ad Y
−1 =

∑

M

CM
ℓ+1 = i

∑

p,q≥1,p+q≥ℓ+1

bℓ−1
p−1,q−1([η]ad Y

−1 )−p,−q.

q.e.d.

In particular, by virtue of Calculations (8.51) and (8.52),

Cℓ+1 = i
∑

p,q≥1,p+q≥ℓ+1

bℓ−1
p−1,q−1η

−p,−q.

Therefore, since Cℓ+1 is of the same algebraic form as in Lemma (6.60) of
[7], we can use this result verbatim to prove that given δ ∈ h∩ker(N)∩
Λ−1,−1

(F̂ ,rW )
we can find unique elements ζ, η ∈ h ∩ ker(N) ∩ Λ−1,−1

(F̂ ,rW )
such

that

eiδ = eζ

(
1 +

∑

k>0

1

k!
(−i)k(adN0)

k gk

)
.

By the above remarks, this completes the proof of Theorem (4.2) for
admissible orbits of type (I).

9. Nilpotent Orbits of Type (II)

Suppose now that θ(z) = ezN .F is an admissible nilpotent orbit of

type (II) and let θ̂(z) = ezN .F̂ be the associated split orbit. Then,

application of Theorem (3.16) to θ̂(z) defines a corresponding splitting

(9.1) N = N0 + N
2
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of N such that θ̂0(z) = ezN0 .F̂ is an SL2-orbit. Consequently,

Fo = θ̂0(i) ∈ MR.

Furthermore, since θ(z) is of type (II), the Hodge decomposition of the
associated function β(y) = Ad (h−1(y))N defined by Theorem (6.11) is
of the form

(9.2) β(y) = β1,−1 + β0,0 + β−1,1 + β0,−1 + β−1,0 + β−1,−1.

As in §7–8, the first five components of the right hand side of equation
(9.2) are governed by the system of differential equations

−8Φ′ = Q(Φ, Φ), −2Ψ′ = Q(Φ, Ψ).

Therefore, as in §7–8, we can formally solve for these components start-
ing from a collection of morphisms of Hodge structures

Tn : sl2(C) → gC, Sn : U → gC.

To solve for β−1,−1, we now return to equation (6.41), which implies
that

(9.3)
d

dy
β−1,−1 = i[β0,0, β−1,−1] + 2i[β0,−1, β−1,0].

Next, we recall that since θ(z) is of type (II) there exists an index k
such that the Hodge decomposition of (Fo, W ) is of the form

(9.4) VC = Ik,k ⊕


 ⊕

p+q=2k−1

Ip,q


 ⊕ Ik−1,k−1

for some index k. Therefore, since GrW
2k and GrW

2k−2 are of pure type
(k, k) and (k − 1, k − 1) it then follows from [7] that Φ acts trivially
Ik,k and Ik−1,k−1. Consequently, [β0,0, β−1,−1] = 0 since β−1,−1 maps
Ik,k to Ik−1,k−1 and annihilates the remaining summands appearing in
(9.4). Thus, equation (9.3) simplifies to

d

dy
β−1,−1 = 2i[β0,−1, β−1,0]

and hence

(9.5) β−1,−1 = µ + 2i

∫
[β0,−1, β−1,0] dy.

Remark. The assertion that Φ must act trivially on GrW
2k and GrW

2k−2
is a simple consequence of the fact that Φ0 must be a morphism of
Hodge structure, and hence Φ0(x

−), Φ0(x
+) must be of type (−1, 1) and

(1,−1) respectively. Therefore, the purity of GrW
2k and GrW

2k−2 implies
that Φ0 must act trivially. As such, the equation −8Φ′ = Q(Φ, Φ) then
implies that all of the higher coefficients of Φ must also act trivially GrW

2k

and GrW
2k−2. In particular, N0 and H commute with every element of

Λ−1,−1
(Fo,W ) = Lie−2(W ).
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To continue, we now observe that by (6.20) we know that if θ(z) was a
split orbit then the associated function h(y) defined by Theorem (6.11)
would be given by the formula

h(y) = eiyNe−iyN0y−H/2 = eiyN−2y−H/2.

Accordingly, when θ(z) is not split we shall write

(9.6) h(y) = g(y)eiyN−2y−H/2.

Therefore, by equation (8.26),

(9.7) g−1(y)
dg

dy
= y−H/2.

(
−1

2
Φ(h) +

H

2y
− Ψ(e)

)
+ iβ−1,−1 − iN−2.

Setting µ = N−2 it then follows from equations (9.5) and (9.7) that
(9.8)

g−1(y)
dg

dy
= y−H/2.

(
−1

2
Φ(h) +

H

2y
− Ψ(e)

)
− 2

∫
[β0,−1, β−1,0] dy

where

(9.9) −2

∫
[β0,−1, β−1,0] dy = y−2{· · · } + y−5/2{· · · } + · · ·

since β0,−1 and β−1,0 have leading order term y−3/2. Combining equa-
tions (9.8) and (9.9) with Theorem (8.27) it then follows that

g−1(y)
dg

dy
=

∑

m≥2

Bmy−m.

Thus, just as in Corollary (8.30),

g(y) = g(∞)(1 + g1y
−1 + g2y

−2 + · · · )
g−1(y) = (1 + f1y

−1 + f2y
−2 + · · · )g−1(∞)

where g(∞) is an arbitrary element of H and gn and fn can be expressed
as universal non-commutative polynomials in the coefficients Bk.

Continuing the analogy with §8, it remains to show that we can select
data (g(∞), {Tn}, {Sn}) such that

h(y).Fo = eiyN .F.

In particular, the proofs of Theorem (8.33) and (8.36) imply mutatis

mutandis that h(y).Fo = eiyN .F̃ where

(9.10) F̃ = g(∞)

(
1 +

∑

k>0

1

k!
(−i)k(ad N0)

k gk

)
.F̂

provided g(∞) ∈ ker(adN) = ker(adN0) ∩ ker(adN−2). Furthermore,
just as in §8, for purely formal algebraic reasons (cf. [7])

(9.11) 1 +
∑

k>0

1

k!
(−i)k(ad N0)

k gk = exp

(
∑

k>0

Qk(C2, . . . , Ck+1)

)
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where Cℓ+1 = (−i)ℓ

ℓ! (ad N0)
ℓBℓ+1. Recycling the argument of Calcula-

tion (8.52), one then finds that

(9.12) Cℓ+1 = i
∑

p,q≥1,p+q≥ℓ+1

bℓ−1
p−1,q−1η

−p,−q

where η =
∑

n>0 [βn]ad H
−n and β(y) = N−2 +

∑
n≥0 βny−1−n/2 is the

series expansion of β.
To complete the proof of Theorem (4.2) for orbits of type (II), observe

that since N0 acts trivially on GrW
2k and GrW

2k−2, the corresponding
limiting mixed Hodge structure on these graded pieces is also of type
(k, k) and (k − 1, k − 1). Therefore, if we decompose the splitting

(F, rW ) = (eiδ.F̂ , rW )

of the limiting mixed Hodge structure of θ(z) as

δ = δ0 + δ−1 + δ−2

relative to the grading Y defined by application of Theorem (3.16) to

θ̂(z), then δ0 acts trivially on Ik,k and Ik−1,k−1. Consequently, δ0 com-
mutes with every element of Lie−2(W ), and hence

eiδ = eiδ−2eiδ0+iδ−1 .

Proceeding as in the last part of §8, we can therefore pick elements η
and ζ ′ so that

eiδ0+iδ−1 = eζ′ exp

(
∑

k>0

Qk(C2, . . . , Ck+1)

)
mod exp(Lie−2(W )).

Accordingly, since H contains exp(Lie−2(W )), we can therefore pick
elements η and ζ such that

eiδ = eζ

(
1 +

∑

k>0

1

k!
(−i)k(adN0)

k gk

)
.

The remaining details regarding the uniqueness of η and ζ now follow
as in §8.
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